31st IEEE International Conference on Computer Theory & Applications

Anomaly Detection on Bitcoin, Ethereum Networks Using GPU-accelerated Machine Learning Methods

Presenting Author

Youssef Elmougy

Georgia Institute of Technology

Georgia, USA

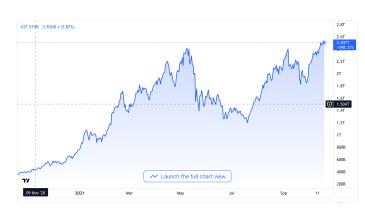
yelmougy3@gatech.edu

Oliver Manzi

Luleå University of Technology

Luleå, Sweden
oliman-8@ltu.se

Cryptocurrencies are becoming prominent



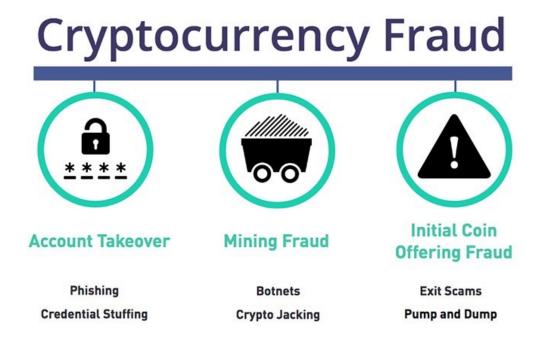
Market cap: \$2.3T

sectors beyond financial services

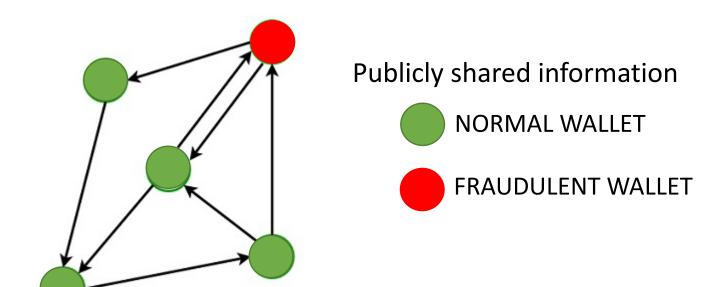
Expand in

THE BLOCKCHAIN

Malicious Behavior Towards Fraud Cryptocurrency Holders



2015: Bitcoin-based scams defrauded **13,000** victims and stole over **\$11M**



Detecting anomalies in the cryptocurrency transaction networks!

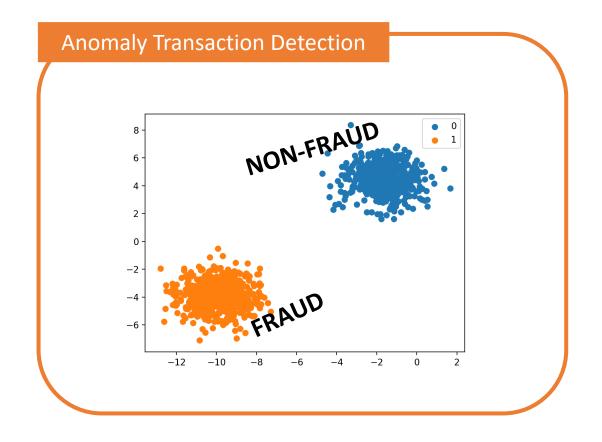
Identifying fraudulent transactions and accounts by detecting anomalies in the Bitcoin and Ethereum transaction networks

- Systematically analyze and accurately detect anomalies on both the Bitcoin and the Ethereum networks
- 2. Deploy GPU-accelerated ML algorithms to analyze datasets consisting of millions of transactions
- 3. Show relationships and feature correlation through sensitivity analysis
- 4. Generalize the study of anomaly detection in the cryptocurrency blockchain to other blockchain networks

- 1. Systematically analyze and accurately detect anomalies on both the Bitcoin and the Ethereum networks
- 2. Deploy GPU-accelerated ML algorithms to analyze datasets consisting of millions of transactions
- 3. Show relationships and feature correlation through sensitivity analysis
- 4. Generalize the study of anomaly detection in the cryptocurrency blockchain to other blockchain networks

- 1. Systematically analyze and accurately detect anomalies on both the Bitcoin and the Ethereum networks
- 2. Deploy GPU-accelerated ML algorithms to analyze datasets consisting of millions of transactions
- 3. Show relationships and feature correlation through sensitivity analysis
- 4. Generalize the study of anomaly detection in the cryptocurrency blockchain to other blockchain networks

- 1. Systematically analyze and accurately detect anomalies on both the Bitcoin and the Ethereum networks
- 2. Deploy GPU-accelerated ML algorithms to analyze datasets consisting of millions of transactions
- 3. Show relationships and feature correlation through sensitivity analysis
- 4. Generalize the study of anomaly detection in the cryptocurrency blockchain to other blockchain networks



- 1. Support Vector Machine (SVM)
- 2. Random Forest
- 3. Logistic Regression

$$\min_{w,b} \frac{1}{2} ||w||^2$$

$$s.t., y_i(w^Tx_i + b) \ge 1, i = 1, 2, ..., m$$

- 1. Support Vector Machine (SVM)
- 2. Random Forest
- 3. Logistic Regression

$$C_{RF} \leftarrow majorityVote\{C_i(x)\}_1^n$$

Where $C_i(x)$ is the predicted classification of the i^{th} random tree.

- 1. Support Vector Machine (SVM)
- 2. Random Forest
- 3. Logistic Regression

$$\min_{w,c} \frac{w^T w}{2} + C \sum_{i=1}^{N} \log(\exp(-y_i(x_i^T w + c)) + 1)$$

Where we have a set of d features, $x = (x_1, ..., x_d)$, parameter vector w, and optimal value C calculated via cross validation.

- 1. Support Vector Machine (SVM)
- 2. Random Forest
- 3. Logistic Regression

Dataset Collection and Preparation

Total transactions: 30,294,698

Non-fraud: 30,290,045

Fraud: 4,653

Total accounts: 504,942

Non-fraud: 500,000

Fraud: 4,942

Model Features

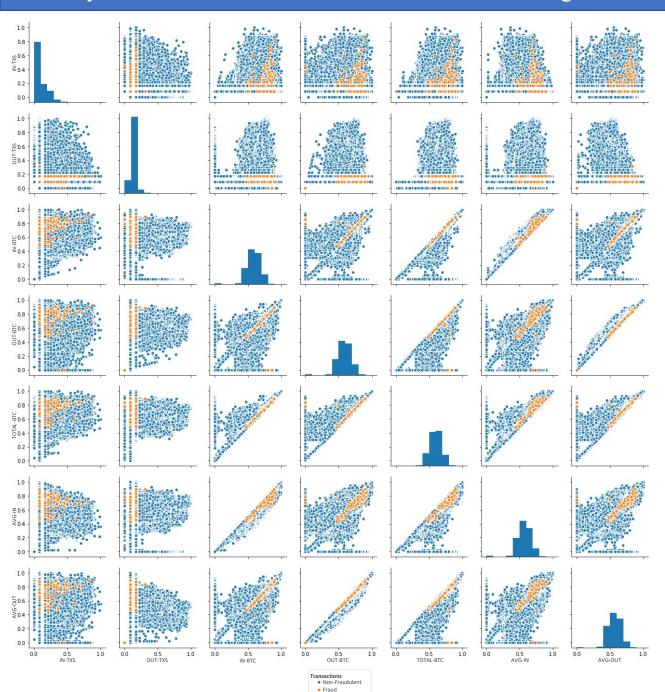
Feature	Description
IN-TXS	Number of incoming transactions
OUT-TXS	Number of outgoing transactions
IN-BTC / IN-ETH	Amount (in Bitcoin/Ether) on incoming transactions
OUT-BTC / OUT-ETH	Amount (in Bitcoin/Ether) on outgoing transactions
AVG-IN	Average amount (in Bitcoin/Ether) on incoming transactions
AVG-OUT	Average amount (in Bitcoin/Ether) on outgoing transactions
TOTAL-BTC / TOTAL-ETH	Total amount (in Bitcoin/Ether) on all incoming and outgoing transactions
FRAUD	Fraud boolean classifier

Exploratory Analysis of the Datasets

High imbalance of fraudulent and non-fraudulent transactions in both datasets due to low public availability of fraudulent data on the blockchain

Data followed a **right-skewed distribution** Solved with a log(x + 1) transformation

Normalization and standardization transformations were applied



Exploratory Analysis of the Datasets

IN — TXS and OUT — TXS feature a negative correlation with maliciousness

IN - BTC, IN - ETH,
OUT - BTC, OUT - ETH,
AVG - IN, AVG - OUT,

TOTAL - BTC and

TOTAL - ETH feature a positive correlation with maliciousness

- 1. Confusion Matrix
- 2. Precision
- 3. Recall
- 4. Accuracy
- 5. F1-Score

Verification metrics:

- 1. Confusion Matrix
- 2. Precision
- 3. Recall
- 4. Accuracy
- 5. F1-Score

Predicted

	Non-Fraudulent	Fraudulent
Non-Fraudulent	TP	FP
Fraudulent	FN	TN

Actual

- 1. Confusion Matrix
- 2. Precision
- 3. Recall
- 4. Accuracy
- 5. F1-Score

$$Precision = \frac{tp}{tp + fp}$$

- 1. Confusion Matrix
- 2. Precision
- 3. Recall
- 4. Accuracy
- 5. F1-Score

$$Recall = rac{tp}{tp + fn}$$

- 1. Confusion Matrix
- 2. Precision
- 3. Recall
- 4. Accuracy
- 5. F1-Score

$$Accuracy = \frac{tp + tn}{tp + tn + fp + fn}$$

- 1. Confusion Matrix
- 2. Precision
- 3. Recall
- 4. Accuracy
- 5. F1-Score

$$F = 2 \cdot \frac{precision \cdot recall}{precision + recall}$$

Results of Anomaly Detection

Used an 80/20 split of training and testing

Non-fraud: 6,058,009

Fraud: 931

Non-fraud: 100,000

Fraud: 988

Updated verification metrics:

- 1. Confusion Matrix
- 2. Precision
- 3. Recall
- 4. Accuracy
- 5. F1-Score

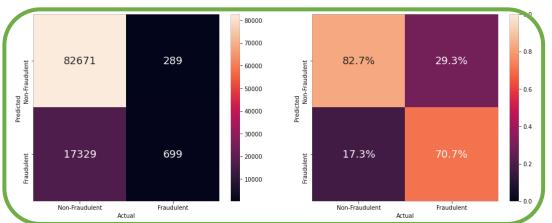
Results of Anomaly Detection

Algorithm		Recall	Accuracy	F1 Score
SVM	Bitcoin	0.987	0.987	0.994
				0.904
Random Forest	Bitcoin	0.930	0.930	0.964
				0.909
Logistic Regression	Bitcoin	0.898	0.897	0.946
				0.899



SVM

Random Forest Logistic Regression



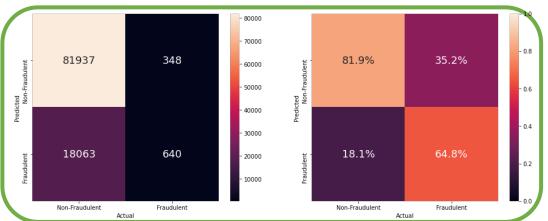
Results of Anomaly Detection

Algorithm		Recall	Accuracy	F1 Score
SVM				
	Ethereum	0.827	0.826	0.904
Random Forest	Bitcoin	0.930	0.930	0.964
	Ethereum	0.835	0.834	0.909
Logistic Regression				0.946
	Ethereum	0.819	0.818	0.899



SVM

Random Forest Logistic Regression



31st IEEE International Conference on Computer Theory & Applications

Thank you for your attention! Any questions?

Anomaly Detection on Bitcoin, Ethereum Networks Using GPU-accelerated Machine Learning Methods

Youssef Elmougy

Georgia Institute of Technology

Georgia, USA

yelmougy3@gatech.edu

Oliver Manzi

Luleå University of Technology

Luleå, Sweden
oliman-8@ltu.se