Increasing Resilience of Distributed Actor-Based
Programming System by Supporting Complex
Acyclic, Cyclic Task Dependencies

Youssef Elmougy
School of Computer science,
Georgia Institute of Technology
Atlanta, Georgia, USA
yelmougy3 @gatech.edu

Abstract—The automatic communication termination protocol
proposed in [1] transfers the burden of termination detection
and related communication bookkeeping from the programmer
to the selector runtime. However, this actor-based programming
system is only built to support acyclic linearly task dependent
applications. We focus on implementing support for complex
acyclic and cyclic task dependencies to increase the resiliency
of this distributed actor-based programming system.

Index Terms—Actors, Selectors, C++, Communication Aggre-
gation, Termination Detection, Task Dependency Graph.

I. INTRODUCTION

With the increased need of computation parallelism, the
Actor Model [_2], which is a model of concurrent computation
in distributed systems, was created. Since the publishing of
the novel actor model, there have been subsequent models
that were created with the goal of improving productivity
and scalability. A new actor-based programming system for
PGAS applications was introduced in [If]. This new Actor-
based system utilizes fine-grained asynchronous actor mes-
sages to express point-to-point remote operations in an effort to
alleviate programmers of message aggregation and termination
detection. The termination graph support implemented in this
project will focus on the actor-based system as described
in [1].

The actor/selector runtime in this model was created by
extending the Habanero C/C++ library ("HClib”, a C/C++
asynchronous many-task (AMT) runtime library) [3]. Impor-
tantly, it employs a lightweight work-stealing scheduler in or-
der to schedule tasks. Within the application, the programmer
can create as many computation tasks as required and offload
all remote access computation tasks to a respective commu-
nication task (referred to as “mailbox™) in an asynchronous
manner.

This model has proven to be very efficient and scalable
through evaluations on acyclic linearly task dependent applica-
tions such as index gather and triangle counting. Although, this
model does not currently support all types of task dependency
graphs, that including complex acyclic task dependencies
(non-linear cases) as well as complex cyclic task dependencies
(both linear and non-linear cases). Such task dependencies are

apparent in many extensively used applications such as quick-
sort, breadth-first search, and matrix decomposition, which
are gaining popularity within High Performance Computing
(HPC) systems.

In an effort to increase resiliency of this distributed actor-
based programming system, the project aims to focus on
implementing support for acyclic non-linear, cyclic linear, and
cyclic non-linear task dependencies.

II. BACKGROUND
A. Actor-Based Programming System

The Actor model was initially introduced by Carl Hewitt et
al. in [4]. It is an asynchronous message-based concurrency
model that treats actors as primitives of computation, where
actors are inherently isolated from one another and have a no-
shared mutable state. Though there might be multiple actors
within the system that execute concurrently, it is important
to note that an actor will only process messages sequentially
within its queue. This property allows for the avoidance of data
races and synchronization, since there is no concurrent local
execution there will be no concurrent contention for access to
local data.

mailbox

/
I]]

& 1T
y

»

\\\‘ local state

Fig. 1: Actor with a mailbox, a local state, and ability to
process one message at a time.

‘\\

process
one message
at a time

Actors communicate by sending asynchronous messages to
one another, hence each actor has a mailbox that stores in-
coming messages while it processes other messages as shown
in Figure [T} At creation, each actor initializes a local state
which is only updated through messages it receives and the

intermediate results it computes while processing the message
during execution.

There has been work to extend the actor model, as intro-
duced in [5]. Imam et al. proposed the extension Selectors,
which preserves the characteristics of actors while providing
an abstraction to support synchronization and coordination
mechanisms. Selectors gives actors the ability to have multiple
guarded mailboxes as seen in Figure 2] where messages can
be received by a specific mailbox of the selector (in which
case the sender specifies the target mailbox of each message).
It’s important to notice that an actor can be seen as a selector
with one mailbox.

Local State \
N

[Guarded Mailboxes
"SI <] =] =] =l
0 ' 4 »
"N B (<] [="
R =y
-
p_ | E3|EA [
N v’ Message

\ Processing Logiy

Fig. 2: Selector with multiple guarded mailboxes, a local state,
and message processing logic.

In the actor/selector’s life cycle, it can be in one of the
following defined states:

An instance of the actor/selector (including its mail-

boxes) has been created; however, the actor/selector

is not yet ready to process messages from its mail-
boxes. This is shown on Line 26 in

Started An actor/selector moves to this state from the new
state when it has been started using the start
operation, as shown on Line 28 in It
can now receive asynchronous messages and pro-
cess messages from any active mailbox one at a
time. While processing a message, the actor/selector
should continually receive any messages sent to
it without blocking the sender. Messages are sent
using the send operation, as shown on Line 29
in |[Listing 1} where the sender specifies the target
mailbox as an argument. After processing a message,
a message can be selected from any active mailbox to
be processed next, without a restriction on the order
of message execution.

Terminated The actor/selector moves to this state from the
started state when it has been terminated and will not
process any messages in its mailbox or new messages
sent to it. An actor/selector signals termination by
using the done operation, as shown on Line 30 in
IListing 1} on itself while processing some message.

New

Listing 1: An example program with a Selector

DepSelector defined with 2 mailboxes (A, B).

I enum MailBoxType {A, B};
2

3 class DepSelector: public hclib::Selector<2, Pkt> {

4 public:

5 DepSelector () : {

6 mb[A] .process = [this] (DepPkt pkt, int
sender_rank) {

7 this->a_process (pkt, sender_rank);

8 }i

9 mb[B] .process = [this] (DepPkt pkt, int

sender_rank) {
10 this->b_process (pkt, sender_rank);
11 }i
12 }

14 private:

15 void a_process (DepPkt pkg, int sender_rank) {
16 send (B, pkg, sender_rank); // user code

17 }

18

19 void b_process (DepPkt pkg, int sender_rank) {

20 //
21 }
2 };

user code

24 int main (int argc, char* argv[]) {
25 hclib::launch([=] {

26 DepSelectorx depSelector = new DepSelector();
27 hclib::finish([=] () {

28 depSelector->start();

29 depSelector->send (A, pkg, pe); // user code

30 depSelector->done (A) ;

N . 1)

33}

Within the started state, actors/selectors can process an

incoming message in one of the following ways:

1) It can create one or more new actors/selectors;

2) It can asynchronously send one or more messages to
other actors/selectors, given that their target mailbox ID
is known;

3) It can change its local state and define how the state will
look for the next message it receives.

B. Termination Graphs

As described previously, the done operation is used to
signal termination for an actor/selector. In the actor model
described by Paul et al. [1]], the done operation is imple-
mented to associate with sending of messages to a mailbox,
while letting the runtime track and drain all messages sent
to it. This was implemented due to the following two key
observations:

1) Sending messages is considered an active part of com-

munication due to the need of explicitly invoking send.

2) Receiving messages is considered a passive part of

communication because the arrival of a message is not
directly under the user’s control.

It is important to notice that in[Cisting 1] the done operation
is performed only for mailbox A and not for mailbox B. This
is possible since mailbox B depends on mailbox A - i.e., a
message is only sent from mailbox A to mailbox B in Line
16.

The concept of Termination Graph explains how this is
possible. Let us first define that mailbox Y depends on mailbox
X if a message is sent to mailbox Y in the process function of
mailbox X.

Based on dependency relations, a directed graph between
mailboxes within a selector can be created. Paul et al. [1]] gave
the assumption that this graph is acyclic, which only deals with
a subset of irregular applications. They assume an imaginary

Outside mailbox, which is a virtual mailbox that does not
depend on any mailboxes within the selector. A dependency on
the Out side mailbox implies a message is received from a
non-actor/selector or a different actor/selector from the current
distributed one.

Given a termination graph, removing an edge, for instance
from X to Y, implies that no more messages will be sent to
mailbox Y in the process function of mailbox X. Therefore,
the done operation on a specific mailbox corresponds to
removing an incoming edge to that mailbox. Using this edge
deletion notion, termination of a selector was formulated as
follows in [1]:

Given a graph whose nodes are mailboxes of a selec-
tor and edges represent dependencies between those
mailboxes, termination of the selector corresponds
to the removal of all edges from this graph.

Within the program, it is the responsibility of the user to
invoke the done operation for those mailboxes that depend
on the Outside mailbox. Using the dependency graph, the
runtime can then figure out when to perform done on the
other dependent mailboxes.

A

v
O

Outside

N

C »| F

Fig. 3: Sample Termination graph with nodes representing
mailboxes and edges representing dependencies.

[Figure 3| shows a sample mailbox dependency graph in
which an arrow from B to E implies that mailbox E depends on
mailbox B. In the given case, the user is required to invoke the
done operation only for mailboxes A, B, and C. The runtime
then deduces when done should subsequently be invoked on
mailboxes D, E, and F.

Once the user performs done (A) on a partition, no more
messages can be sent from mailbox A from that partition.
However, it can still continue to receive and process messages.
This implies that messages can be sent from the process
method on any partition of mailbox A to mailbox D. Therefore,
the runtime needs to ensure that done (A) is invoked on all
partitions and wait for all messages to be drained from all
partitions of mailbox A. At this stage, no more messages can
be sent to mailbox D since it was dependent on mailbox A.
Hence, the runtime now invokes done (D). If a mailbox has
multiple predecessors, such as mailbox F, the runtime waits
for the termination of all the predecessors before terminating
the mailbox.

III. LITERATURE REVIEW

It is important to dive into detail regarding different types
of task dependencies, as well as applications that are Repre-
sentative of each.

Task dependencies have two characteristics: 1) the number
of predecessors and successors of each node (1 or multiple),
and 2) whether dependencies are acyclic or cyclic. In order to
increase the resilience of the distributed actor-based system,
support for each of these dependencies is required. The
following looks at possible types of dependency graphs within
the acyclic and cyclic cases, as well as provide representative
applications of the type:

A. Acyclic Task Dependencies

Within the acyclic case, we can have the following different
types according to the first characteristic of task dependencies:

1) Nodes with 1 predecessor and 1 successor: In this case,
each mailbox can be dependent on only one other mailbox
and can invoke a dependency on only one other mailbox as
shown in Figure E} In the actor model defined in [1]], this was
the only pattern that was considered, producing a linear graph
as a dependence pattern.

Outside

Fig. 4: Acyclic Termination graph where nodes have only one
predecessor and one successor.

The real world applications that fall within this dependency
pattern include histogram, index gather, topological sort, trian-
gle counting, triangle centrality, jaccard index, page rank, and
some other applications from the Bale Kernels [[6] that were
used to test the correctness of the actor model in [1].

2) Nodes with 1 predecessor and multiple successors:
In this case, each mailbox can be dependent on only one
other mailbox but can invoke dependencies on multiple other
mailboxes as shown in Figure

A »| B

Outside
C D
E

Fig. 5: Acyclic Termination graph where nodes have only one
predecessor but multiple successors.

The real world applications that fall within this dependency
pattern include quicksort, Fibonacci, binary tree, BFS, DFS,
and strongly connected components.

3) Nodes with multiple predecessors and multiple succes-
sors: This is the complete case where each mailbox can be
dependent on multiple other mailboxes and can invoke depen-
dencies on multiple other mailboxes as shown in Figure [6]

A B

Outside
C D
E

Fig. 6: Acyclic Termination graph where nodes have multiple
predecessors and multiple successors.

The real world applications that fall within this dependency
pattern include Fast Fourier Transform (FFT).

B. Cyclic Task Dependencies

Cyclic task dependencies are expected to be explored within
Milestone 3’s work, this section will be updated accordingly.

IV. RELATED WORK

From my research, there is no prior work related to task
dependency graph terminations specific to actor-based pro-
gramming systems. Although, there have been several studies
done related to task dependencies in parallel systems. Slaugh-
ter et al. [[7]] designed Task Bench, a parameterized benchmark
to evaluate parallel runtime performance. These benchmarks
explore the performance of distributed systems and allows
for a wide variety of benchmark scenarios that are evident
in real world applications. They evaluate several task-based
applications such as Stencil and FFT.

Lin et al. [8] proposed an efficient work-stealing scheduler
for task dependency graphs. This is not directly related to
our study, although it provided insights into task dependencies
within graph algorithms as well as an evaluation of scalability
analysis that was utilized.

V. IMPLEMENTATION

In this section, we discuss the current termination graph
implementation within the actor system described in [1], our
extended acyclic termination graph implementation, and our
extended cyclic termination graph implementation.

A. Current Termination Graph Implementation

In [T]}, only the acyclic termination graph shown in Figure [4]
is implemented. In that case, we only deal with nodes that
have one predecessor and one successor. shows the
implementation of the done operator within the system, which
takes the mailbox ID, mb_id, as a parameter to the function.
When a user invokes done (mb_1id), the following occurs:

1) The mailbox with ID mb_id begins its termination
phase by calling done () on itself on Line 2.

2) The worker thread asynchronously waits upon the com-
pletion of the loop on Lines 3 and 12, and within the
loop the following occurs:

a) The variable holding the number of mailboxes ter-
minated (num_work_loop_end) is incremented
on Line 4.

b) If we have terminated all N mailboxes within the
system, then we go into Lines 8-11 in the if
statement, and send out a “promise” (signal of
completion) to the main worker loop indicating
that the termination process for all mailboxes has
been completed and that the main program can now
terminate.

c) If we have not yet terminated all N mailboxes
within the system, then we go into Line 6 and call
done () on the next mailbox within the sequence
(the mailbox with ID mb_id+1).

Listing 2: Algorithm associated with the done operation.

1 void done (int mb_id) {

2 mb [mb_id] .done () ;

3 hclib::async_await_at ([=] () {
4 num_work_loop_end++;

5 if (num_work_loop_end < N) {
6 done ((mb_id+1) %N) ;

7 }

8

9

else {
assert (num_work_loop_end == N);
10 end_prom.put (1) ;
11
12 }, mb[mb_id].get_worker_loop_finish(), nic);

13}

We can use Figure [4] as an example to show this process.
Let’s assume the user invokes done (&) and then done (C),
the following will occur:

1) done(A) is called. Line 2 will begin the
termination phase for mailbox A. In Line 4, we
increment num_work_loop_end to 1. Since
num_work_loop_end < N, done(B) is called
(since it is the next mailbox in the linear sequence).
When done (B) is called, Line 2 will begin the
termination phase for mailbox B. In Line 4, we
increment num_work_loop_end to 2. Since
num_work_loop_end < N and there are no more
mailboxes within the sequence, we wait until all
mailboxes are terminated.

2) done(C) is «called. Line 2 will begin the
termination phase for mailbox C. In Line 4, we
increment num_work_loop_end to 3. Since
num_work_loop_end < N, done (D) is -called
(since it is the next mailbox in the linear sequence).
When done (D) is called, Line 2 will begin the
termination phase for mailbox D. In Line 4, we
increment num_work_loop_end to 4. Since
num_work_loop_end == N, we know that we
have terminated all mailboxes and hence we send the
“promise” signal on Line 10 and exit from the loop.

B. Acyclic Termination Graph Implementation

In this project, we built upon the current implementation
and added support for the acyclic task dependencies as seen in
Figure 5] (nodes with one predecessor and multiple successors)
and Figure [6] (nodes with multiple predecessors and multiple
successors). It is clear that if support is implemented for the
latter case, then it will cover the former case as well.
shows the implementation of the done_extended operator
within the system, which takes the mailbox ID, mb_id, as a
parameter to the function.

Listing 3: Algorithm associated with the done_extended
operation.

1 void done_extended (int mb_id) {
2 mb[mb_id] .done () ;

3 hclib::async_await_at ([=] () {
4 num_work_loop_end++;

5

vector<int> successor_mailboxes = mb[mb_id].
get_dep_mailboxes () ;

6 if (successor_mailboxes.size() > 0) {

7 for (int consté& i1 : successor_mailboxes) {

8 int num_predecessors = mb[i].
get_predecessor_count () ;

9 if (num_predecessors == 1) {

10 done_extended (i) ;

11 } else {

12 mb[i].dec_predecessor_count () ;

13 }

14 }

15

16 else if (num_work_loop_end == N) {

17 end_prom.put (1) ;

18 }

19 }, mb[mb_id].get_worker_loop_finish(), nic);

20 }

The assumption made in this approach is that the user
provides a list of predecessors and a list of successors for each
mailbox initialized within the definition of the Selector
class. This can be seen on Lines 9, 14, 19, 24, and 29
in (a sample program), where the utility function
add_dep_mailboxes () is utilized (function implementa-
tion can be seen in [Listing 5)). These two lists are local to each
mailbox. When a user invokes done (mb_id), the following
occurs:

1) The mailbox with ID mb_id begins its termination
phase by calling done () on itself on Line 2.

2) The worker thread asynchronously waits upon the com-
pletion of the loop on Lines 3 and 19, and within the
loop the following occurs:

a) The variable holding the number of mailboxes ter-
minated (num_work_loop_end) is incremented
on Line 4.

b) All the successor mailboxes of mailbox mb_id are
grabbed and stored in a vector on Line 5.

¢) If the current mailbox has no successor mailboxes
and we have terminated all N mailboxes within
the system, then we go into Lines 16-18 in the
if statement and send out a “promise” (signal of
completion) to the main worker loop indicating
that the termination process for all mailboxes has
been completed and that the main program can now
terminate.

1
2
3
4
5
6

7
8
9

10

11

12

13

14

15

16

17
18
19
20
21

22
23
24
25
26

27

28

29
30
31

32
33
34
35
36
37
38
39
40
41

42
43
44
45
46
47
48
49
50
51
52
53
54
55

enum MailBoxType {A,

class DepSelector: public hclib::Selector<5,

d) If the current mailbox has successor mailboxes,

then we go into Lines 7-14 and loop through each
successor mailbox in Line 7.
i) The number of predecessors for mailbox
mb_1id is grabbed on Line 8.
ii) If the number of predecessors is 1, then we
know that this is the last predecessor mailbox,
hence we call done_extended on the suc-
cessor mailbox on Line 10.
If the number of predecessors is not 1, then
we know that the successor mailbox has other
predecessors that have not completed execu-
tion, hence we cannot terminate the successor
mailbox, and instead we decrement the number
of pending predecessors on Line 12.

iif)

Listing 4: A program with a Selector DepSelector defined
with 5 mailboxes (&, B,
dependency graph in Figure @

C, D, E) that creates the task

B, C, D, E};

Pkt> {

public:
DepSelector () : {

}

mb[A] .process = [this] int
sender_rank) {

this->a_process (pkt,

(DepPkt pkt,
sender_rank) ;
}i

mb[A] .add _dep_mailboxes ({}, {B,D});

int

mb[B] .process = [this
sender_rank) {
this->b_process (pkt,

(DepPkt pkt,
sender_rank) ;
bi

mb[B] .add_dep_mailboxes ({A}, {});

int

mb[C].process = [this
sender_rank) {
this->c_process (pkt,

(DepPkt pkt,

sender_rank) ;

;

[C].add_dep_mailboxes({}, {D,E});

int

& &

[D] .process = [this]
sender_rank) {
this->d_process (pkt,

(DepPkt pkt,

sender_rank) ;

g

[D] .add_dep_mailboxes ({A,C}, {});

mb[E] .process = [this] int
sender_rank) {
this->e_process (pkt,

(DepPkt pkt,

sender_rank) ;
bi

mb[E] .add_dep_mailboxes ({C}, {});

private:

i

void a_process (DepPkt pkg,

}

void b_process (DepPkt pkg,

}

void c_process (DepPkt pkg,

}

void d_process (DepPkt pkg,

}

void e_process (DepPkt pkg,

}

int sender_rank) {
sender_rank); // u code

sender_rank); //

send (B,
send (D,

pkg,
pkg,

int sender_rank) {
// user code

int sender_rank) {
sender_rank); //

sender_rank); //

send (D, pkg,
send (E, pkg,

int sender_rank) {
// user code

int sender_rank) {

// user code

56 int main(int argc, charx argv[]) {
57 heclib::launch([=] {

58 DepSelector* depSelector = new DepSelector();
59 heclib::finish([=] () {

60 depSelector->start();

61 depSelector->send (A, pkg, pe); //

62 depSelector->send(C, pkg, pe);

63 depSelector->done_extended (a); /,

64 depSelector->done_extended (3); // t

6 b

66 b

67 }

We can use Figure [6] as an example to show this process.
Let’s assume the user invokes done_extended (A) and
then done_extended (C) (Line 63 and 64 in [Listing 4),
the following will occur:

1) done_extended (A) is called. Line 2 will begin
the termination phase for mailbox A. In Line 4, we
increment num_work_loop_end to 1. We then grab
{B, D} as the successor mailboxes in Line 5. Since we
have successors, we loop through each on Line 7.

a) For mailbox B, the number of predecessors is 1,
so done_extended (B) is called.

i) When done_extended(B) is called,
Line 2 will begin the termination phase
for mailbox B. In Line 4, we increment
num_work_loop_end to 2. We then
grab {} as the successor mailboxes in Line
5. Since we do not have successors and
num_work_loop_end < N, we wait until
all mailboxes are terminated.

b) For mailbox D, the number of predecessors is 2, so
we decrement the number of waiting predecessors
on Line 12.

2) done_extended(C) is called. Line 2 will begin
the termination phase for mailbox C. In Line 4, we
increment num_work_loop_end to 3. We then grab
{D, E} as the successor mailboxes in Line 5. Since we
have successors, we loop through each on Line 7.

a) For mailbox D, the number of predecessors is 1,
so done_extended (D) is called.

i) When done_extended (D) is called,
Line 2 will begin the termination phase
for mailbox D. In Line 4, we increment
num_work_loop_end to 4. We then
grab {} as the successor mailboxes in Line
5. Since we do not have successors and
num_work_loop_end < N, we wait until
all mailboxes are terminated.

b) For mailbox E, the number of predecessors is 1,
so done_extended (E) is called.

i) When done_extended(E) is called,
Line 2 will begin the termination phase
for mailbox D. In Line 4, we increment
num_work_loop_end to 5. We then
grab {} as the successor mailboxes in Line
5. Since we do not have successors and
num_work_loop_end == N, we know

that we have terminated all mailboxes and
hence we send the “promise” signal on Line
17 and exit from the loop.

Listing 5: Algorithm associated with the

add_dep_mailboxes operation.

1 void add_dep_mailboxes (list<int>
predecessor_mailboxes, list<int>
successor_mailboxes) {

2 // deal with predecessors

3 predecessor_count predecessor_mailboxes.size();

4 / / 5 S cce ra

5

// deal with rs
for (int consté& mb_ : successor_mailboxes)
dependency_mailboxes.push_back (mb_id);

C. Cyclic Termination Graph Implementation

Cyclic task dependencies are expected to be explored within
Milestone 3’s work, this section will be updated accordingly.

VI. NEXT STEPS: MILESTONE 2 AND FINAL SUBMISSION

Milestone 2 consisted of adding functionality for the acyclic
cases, although I am ahead of schedule and have implemented
that. Therefore, for the next milestone I will have implemented
a real world application to test out the dependencies. (SUB-
MISSION DATE: 11/4)

For the final milestone, I am still on track to add function-
ality for the cyclic cases, although from discussion and the
literature review it seems as this case will prove to be a lot
more difficult. (SUBMISSION DATE: 12/9)

For the Final submission, the plan was to write a full
report on the project. In this milestone, I wrote the parts of
the report regarding the introduction, background, literature
review, related work, and the acyclic implementation. For the
final submission I will build upon these sections and complete
the cyclic implementation part. (SUBMISSION DATE: 12/9)

ARTIFACT
Repository: |https:/github.com/youssefelmougy/hclib/tree/bale_actor

Termination Graph Implementation: |hitps:/github.com/
youssefelmougy/hclib/blob/bale_actor/modules/bale_actor/inc/selector.h

Test Benchmarks: |hitps:/github.com/youssefelmougy/hclib/blob/
bale_actor/modules/bale_actor/benchmarks/dependancy_selector.cpp

REFERENCES

[1] S.R. Paul, A. Hayashi, K. Chen, and V. Sarkar, “A productive and scalable
actor-based programming system for pgas applications,” in International
Conference on Computational Science. Springer, 2022, pp. 233-247.

[2] G. Agha, Actors: a model of concurrent computation in distributed
systems. MIT press, 1986.

[3] M. Grossman, V. Kumar, N. Vrvilo, Z. Budimlic, and V. Sarkar, “A plug-
gable framework for composable hpc scheduling libraries,” in 2017 IEEE
International Parallel and Distributed Processing Symposium Workshops
(IPDPSW). 1EEE, 2017, pp. 723-732.

[4] C. Hewitt, P. Bishop, and R. Steiger, “A universal modular actor for-
malism for artificial intelligence,” in Advance Papers of the Conference,
vol. 3. Stanford Research Institute Menlo Park, CA, 1973, p. 235.

[S] S. M. Imam and V. Sarkar, “Selectors: Actors with multiple
guarded mailboxes,” ser. AGERE! ’14. New York, NY, USA:
Association for Computing Machinery, 2014. [Online]. Available:
https://doi.org/10.1145/2687357.2687360

https://github.com/youssefelmougy/hclib/tree/bale_actor
https://github.com/youssefelmougy/hclib/blob/bale_actor/modules/bale_actor/inc/selector.h
https://github.com/youssefelmougy/hclib/blob/bale_actor/modules/bale_actor/inc/selector.h
https://github.com/youssefelmougy/hclib/blob/bale_actor/modules/bale_actor/benchmarks/dependancy_selector.cpp
https://github.com/youssefelmougy/hclib/blob/bale_actor/modules/bale_actor/benchmarks/dependancy_selector.cpp
https://doi.org/10.1145/2687357.2687360

(6]

(71

(8]

F. M. Maley and J. G. DeVinney, “A collection of buffered communica-
tion libraries and some mini-applications.” https://github.com/jdevinney/.
bale, 2020.

E. Slaughter, W. Wu, Y. Fu, N. Garcia, W. Kautz, E. Marx, K. S.
Morris, Q. Cao, G. Bosilca, S. Mirchandaney et al., “Task bench: A
parameterized benchmark for evaluating parallel runtime performance,”
in SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis. 1EEE, 2020, pp. 1-15.

C.-X. Lin, T.-W. Huang, and M. D. Wong, “An efficient work-stealing
scheduler for task dependency graph,” in 2020 IEEE 26th International
Conference on Parallel and Distributed Systems (ICPADS). 1EEE, 2020,
pp. 64-71.

https://github.com/jdevinney/bale
https://github.com/jdevinney/bale

	Introduction
	Background
	Actor-Based Programming System
	Termination Graphs

	Literature Review
	Acyclic Task Dependencies
	Nodes with 1 predecessor and 1 successor
	Nodes with 1 predecessor and multiple successors
	Nodes with multiple predecessors and multiple successors

	Cyclic Task Dependencies

	Related Work
	Implementation
	Current Termination Graph Implementation
	Acyclic Termination Graph Implementation
	Cyclic Termination Graph Implementation

	Next Steps: Milestone 2 and Final Submission
	References

