y

IEEE CCGRID 2025

The 25t |EEE International Symposium on Cluster, Cloud and Internet Computing
Tromsg, Norway

ActorlSx: Exploiting Asynchrony
for Scalable High-Performance
Integer Sort

Habanero Extreme Scale Software Research Lab
Georgia Institute of Technology

* Presenting Author: Georgia
Tech.

Integer and Data Movement Performance in HPC

* Integer sorting remains a critical operation in HPC, playing a vital role in
numerous applications
« Graph Analytics
 Distributed Sparse Linear Algebra
« Scientific Simulations
« and more!

 The Integer Sort (IS) kernel from the NAS Parallel Benchmark (NPB) has served
as a standard for assessing integer and data movement performance in HPC

systems since 90s
« Two-sided MPI-based Bucket Sort Algorithm with MPTI_Alltoallv

IS — The NPB 2 implementation of the IS kernel benchmark is based on a bucket sort.
The number of keys ranked, number of processors used, and number of buckets employed
are all presumed to be powers of two. This simplifies the coding effort and leads to a
compact program. The number of buckets is a tuning parameter. On the systems tested,
best performance was obtained when the number of buckets was half that which gives best
load balancing. ICommunication costs are dominated by an MPI_Alltoallv,I wherein each Gr Georgia
processor sends to all others those keys which fall in the key range of the recipient. Tech.

ISx: Addressing limitations of the original NPB IS

* The development of ISx addressed several limitations of the original NPB IS
benchmark by introducing OpenSHMEM's one-sided communication

Weak-Scaling Performance of the Key Exchange part of ISx (227 keys per PE)

7

Absolute Timing:
6 Lower is better

. MPI
m
=
S 4
(3]
[]
i
3
£ SHMEM
=
2
1 IDEAL
0
24 4% 9 A2 b 16® 2530 2012 GAAS
Number of PEs or Ranks

Research Question: Can we come closer to the IDEAL
performance on modern distributed HPC systems?
Platform: Edison @ NERSC (decommissioned)

Gr Georgia
Tech.
The image has been altered from its original source for clarity and simplicity in presentation: https://www.qgithub.com/ParRes/ISx

https://www.github.com/ParRes/ISx

ISx: High-Level Overview

Goal: Sort a distributed array on 3 PEs (Ranks) using the Bucket Sort Algorithm
Input: an unsorted array, Output: a sorted array

PEO PE1 MAX_KEY_VALUE =12
Bucket 0 (Range: 0-3) Bucket 1 (Range: 4-7) BUCKET_WIDTH = 12/3 =4

Input:

PGy | 5 | 8 2 3 | 9

Step 1: Compute a target bucket (PE) by dividing each element by the bucket size (4)

hktesal o | 1 2 0o | 0 | 2

Step 2: Aggregate multiple integers with the same target PE Local
Send Buffer Work
Construction y
1 5 | 8 b9 — .
Step 3: All-to-All Exchange (Involves Communications) Blocking

EEEREEEAREEE T Comm

Step 4: Local Sort

& Barrier

Output:

Georgia
SMepuilN 1| 2 | 3 | 4| 5 6| 7 G

The 3 Challenges in Scalable Integer Sort:

Barrier

This paper studies the scalability of our actor-based approach to overcome the inherent
challenges of traditional programming models by performing large-scale integer sorting.

Our Vision: Fine-grained-Asynchronous Bulk-Synchronous

Model (FA-BSP)

* FA-BSP = PGAS + Actor-based asynchronous messaging + BSP
 Actor = PE = a thread/rank that owns a slice of the global address space
« Communications between PEs are achieved via asynchronous active

mesSages

» The extended barrier waits for all active messages to complete in a superstep

Péartitioihed Global Address Spacie ‘

Thread Local State

f

process() {
// update a local state
}

A

Mailbox

“A Fine-grained Asynchronous Bulk Synchronous
parallelism model for PGAS applications.” Sri Raj
Paul, Akihiro Hayashi, Kun Chen, Youssef
Elmougy, Vivek Sarkar. JCS 2023

PEy | PE, | ' PE,
MEM | MEM | . MEM
| | l
Async Local Work
Send Async
To PE;4 Send
To PE]
o0 Async Active
I Messages
Extended Barrier (waits for all threads Georgia
(Gl" Tech.

& all active messages to complete)

6

Many distributed graph/non-graph algorithms can be
implemented using our FA-BSP model

« Our FA-BSP model is well-suited for graph and non-graph algorithms

* Bale Kernels (JCS'23) + IARPA AGILE Workflows

+ Histogram » Graph Neural Networks

Index Gather . ,

« Random Permutation » K-mer Counting (IPDPS’25)
« Transpose Matrix * Influence Maximization (SC'24)
» Triangle Counting
« Toposort 6‘*’ 2,
e Other Graph kernels S %
§' =

Triangle Centrality (SCALE Challenge at CCGRID'24)
Page Rank (SCALE Challenge at CCGRID'23)
Jaccard Coefficients (ISC'24)

Triangle Counting (SC'23 Poster) v
2z

BFS ORKFLOW®

Georgia
Gl" Tech.

ActorlSx: Exploiting Asynchrony for Scalable High-
Performance Integer Sort

ActorlSx enables asynchronous point-to-point communication with application-level and
runtime-level message aggregation

PEO PE1 MAX_KEY_VALUE =12
Bucket 0 (Range: 0-3) Bucket 1 (Range: 4-7) BUCKET_WIDTH = 12/3 =4

Input:

PGy | 5 | 8 2 3 | 9

Step 1: Compute a target bucket (PE) by dividing each element by the bucket size (4)
Target Buckets
Paaall o 1 2 | 0 | 0 | 2 | Loca
Step 2: Aggregate multiple integers with the same target PE into fixed-size buffers Computation
Send Buffer T
Construction g Overlap!
[s [s |23 o | o LGN] O
Step 3:Asynchronous All-to-All Exchange with Runtime Message Aggregation A
—— L sync

Step 4: Local Sort

Output:

Georgia
SMepuilN 1| 2 | 3 | 4| 5 6| 7 ™

Experimental Setup and Architecture

« Experiments conducted on the CPU nodes of the Perlmutter supercomputer at
the National Energy Research Scientific Computing Center (NERSC)
« 2x AMD EPYC 7763 (Milan) CPUs
* 64 physical cores per CPU

« 512 GB memory

Package 140 Package 141

Groupd Grougll Groupd Groupd

« 1x HPE Cray Slingshot Interconnect |E==—= | E— = 1 E— | Er— I

| 12 (%12KB) ” L2 (512KE) |m‘:”:I

o [z ez]||[i2 oo][z cmm] 200 [o][cme][o] 288 [e ||| oo][w e] 280 (e e |||z o][2 o] 009 [o]

Y) ') | Lld (3ZKE) ” Lld (3IZKE) | r‘)l.ﬂl d (H'ﬂi)l | Lld (32KB) ” Lld (32KE) l | Lld (32KB) ” L4 (3ZKB) [l L1d (’12'K6)| |L|xl (IZKE) | | Lld (32KB) ” Lld (3IZKE) | | La (!'))@)[| Ld (32K8) ” Lld (32KB) [| Ld HZ’YJ&)'
[0 0] [coxe zm] [za7] || [oem £arg] [core nz] [eome wa23] [coen noza] [core tazs] [coxe nam] [come voea] [coe wres] [eoma zin] (|[oe= nos0] [core zans Cove LRT
| 13 (32M8) | 0.2 0.2/ NI 41:04.0 | L3 (32MB) | | 13 12ME) |

|)kt m‘lmﬂI

| 12 (512KE) ” L2 (512KE) |nqu£ ‘l 2 ('n:-m_\l | L2 (512K8) ” L2 (%12KE) |HP:'-L":‘|]l 2 ('x|7)G—'yI I 12 (5128E) ” L2 (512KE) [Rxﬂ:'-‘ﬂll 2 :-4:7:;«3'

Of sSca I a b il ity are p rese n‘t g d [o[cmm] [o] [e[] [][o[] [com]

|Lli u;'xls)”u; (‘!:Ms';l |L|i ('e:'m)l |u. l'ii’m)”mi (17KB) | |mi (ma-)l | L1 ('uxm”ui u:'xb’;[|L\: (e;'w».\l
|mm Lul Icom l._")l |mm u)sl |mw Ll'ﬂl |oa-n Lnsl |(bm l.rnl |cz.m uull Icon L’lsl Imnr uesl
Croupd Groupl Groupl Croupd

|umm 142 PA2 (S3GB) | |>numn, LE3 PR3 (63GE) | Iw»«« Li6 TRE (E3E) | |um,<w 147 P7 (63GE) |
||.'| (12M8) ”l.’é (2M8) | |L'1 (22M8) | |u (32MB) [|u (32ME) |

|u .-n,.-m-»”r.:v (51 2K8) |h"-“°‘x:"| %] \-:n:-n«_\”u (512KE) ”r,.v ('n:-r.p)l nxnf‘."-‘"llr,.v m;-xml |((512KE) [lr,x c:n:zma_\l n:-'uf"llm (-.x:-xr»_\l |r.z c:;um_\”u (512KB) |af3,'.:.'.1| 2 (ulnml Iw mznﬂ”l,g (51 ZKE) 'ufgﬁll 2 ('vl.')ﬁ_\l

[cmm] [12e oz [o | [om e e || e e [a]

o °¥ o o o o ollollo | i f’i?xb)”h‘i (B) | | i \"‘Jﬂ*)”b\i (IZEE) ||Lli ’r-h)l |[.Ii (IZKB) ”LIA ("JKB." |L|i (3ZKE) | | i ("“»'\'f\)”L\i (I 7KE) | | i (l:‘q!)l
: : : : : : : : : [coe 1032 [core naas) [eone za] [coew paan] [cocs o] |cace vaan] [cace raes] [caca wasa] ||| [ooue wane] [Sase nosa] | |||] | | [(coe zans]
4 alla 4 a 4 allalla |m (i) | [@] [) |
Y £ 3 i A
v v ¥ v 3 v vy + ¢ 4 [12 ez [z cnzmm] 880 [i2 oz |[||[[2 oz [z oz] 808 (o e ||| e][e @ow] 280 (o o]
|L'[d (IZRE) ” Lld (‘l;'Kfs.\l |L1-! (IZEE) | | Lla (32KB) ” Lld (37KB) l | L (1:‘)@}[| Lld (I2KB) ” Lld | ZKE) l | La (’!l’ﬂ‘\v\l
|LIA (I2KB) [I L1i (‘f/'KF)l Il,li (17KE) | I L1i (32KB) ” L1i (32KB)] | L1i (32KB) | I Lli (32KB) ” L1i (3ZKE) l | i ('!:'71‘.\'
m— =
AMD Milan >q_> AMD Milan [ocs vase] [coe rase] [eee naea] ||| [comm mor0e] [coee eros] [[come wana] || [oem £0120] [core tmrz | [core ra1z7]
Hoat: nid049%6d
Date: ¥on 05 Dac 2122 01:22:00 ™ PST

Picture borrowed from: https://docs.nersc.gov/systems/perimutter/architecture/

—t Gr Georgia
NIC Tech.

https://docs.nersc.gov/systems/perlmutter/architecture/

Dimensions of Scalability

The paper studies two weak-scaling scenarios from the original I1Sx:

P WEAK SCALING ISO WEAK SCALING

Variable (26 - 214)
Constant (227)

of cores
Keys per core
MAX_ KEY VALUE

BUCKET WIDTH
= MAX_KEY_ VALUE /
of cores

Stability of Communication

Example
(Ultimate Case)

Constant (228)
Variable (222 to 214)

Unstable

MAX_KEY VALUE =4
BUCKET _WIDTH = 4 / # of cores

2 cores nnn

No communication

4 cores nnnn
S AN

Unstable (depends on # of cores)

Variable (219 - 227)
Constant (213)

Stable

MAX_KEY_VALUE =4 -8
BUCKET_WIDTH = 2

2 cores nnn

No communication
AR 1| 0| 3| 2 [4SRG
No communication €°rgia
Stable (independent of core count) o

Weak Scaling Results on Perimutter (up to 16k cores):
CONSTANT max key (228): Unstable communication

227 keys per core => 233 keys (64 cores), 24! keys (16k cores)

Absolute Timing:
Lower is better

Speedup of ActorISx:
Higher is better

—@— MPI 1-Sided ' Pl 1-Sided
. Il vs -olde
201 MPI-2-Sided 6.0 vs MPI 2-Sided
- —@— SHMEM " cMEm
0 401 —@— ActorlSx A 50| - Vs
£ | g
= , < 4.0
cc) 30 ua
15)’ 2 3.0
g 201 S
b 0 2.0
10 @ 0 I
e——t——— ——eo—— 1o W __ _ g - W N EOH
0 IDEAL 0.0
64 128 256 512 1024 2048 4096 8192 16384 ' 64 128 256 512 1024 2048 4096 8192 16384
Number of Cores Number of Cores

 ActorlSx achieves almost an ideal weak-scaling result thanks to
» Asynchronous communication

« Two-level message aggregation Gr Georgia

« Multi-hop routing Tech.
11

ISO Weak Scaling Results on Perimutter (up to 16k cores):
INCREASE max key (279 - 227): Stable communication

227 keys per core => 233 keys (64 cores), 24! keys (16k cores)

Absolute Timing: Speedup of ActorlSx:
7 Lower is better Higher is better
50 7.0

—@— MPI 1-S?ded s vs MP| 1-Sided
20 MPI 2-Sided 6.0 vs MPI 2-Sided
0 —&— SHMEM & = s SHMEM
° —@— ActorISx o) 201
€ 30 o
= < 4.0
Y
5 o
= 50 Q 30
] ©
)]
10 I I
1.0———-—._-._ - N
064 138 256 512 1024 2048 4096 8192 16384 0.0 64 128 256 512 1024 2048 4096 8192 16384
Number of Cores Number of Cores

 ActorlSx achieves almost an ideal weak-scaling result thanks to
» Asynchronous communication

« Two-level message aggregation Gr Georgia

« Multi-hop routing Tech.
12

Impact of the Solution

 Our algorithm has shown efficient scalability and performance
» The extensibility of this algorithm has four major impacts:

By leveraging the actor model, we have addressed the fundamental
limitations of NPB IS while maintaining high performance and scalability

Our algorithm can be applied to other data-intensive and
communication-intensive applications

Our actor-based approach is a viable alternative to traditional MPl-based
and SHMEM-based approaches

Our solution shows that actor-based approaches will play an
increasingly important role in future HPC systems

Georgia
Tech.
13

DEMO

ActorlSx: Exploiting Asynchrony for Scalable High-Performance Integer Sort

, Georgia
Tech
14

You can try this at home... Just visit hclib-actor.com !

LN @ Bulk Synchronous Parallel - HC X + v

& C @ hclib-actor.com/background/bsp/ h % » 0@

@ HClib-Actor Documentation Q, Ssearch e

235

HClib-Actor Documentation B U | k Synch I'O N OU S Pa ra | | el D) D Table of contents
Home What is the bulk synchronous
parallel model?
Background . .
. Single Program Multiple Data
Theory « Whatis the bulk synchronous parallel model? (SPMD) Programming
Bulk Synchronous Parallel Further Readings

Partitioned Global Address The Bulk Synchronous Parallel (BSP) model is one of the most popular parallel computation

Space models.
Actor Model X
The model consists of:
Practice v
OpenSHMEM ¢ A set of processor-memory pairs.
Bale h « A communication network that delivers messages in a point-to-point manner.
Summary . . N
« Efficient barrier synchronization for all or a subset of the processes.
spmat
libgetput

<+—— Virtual Processors ——
PEy, PE; PE,
Getting Started I

Habanero-C Library (HClib)

Containers v .
Local Computation

Docker

SUPERSTEP

Singularity

Clusters/Supercomputers v

Inter-processor
Communications

Writing HClib-Actor Programs B _ Barrier Synchronization & Georgia

NERSC/ORNL/PACE

This research is based upon work supported by the Office of the Director of
National Intelligence (ODNI), Intelligence Advanced Research Projects Activity
(IARPA), through the Advanced Graphical Intelligence Logical Computing
Environment (AGILE) research program, under Army Research Office (ARO)
contract number WO91T1NF22C0083. The views and conclusions contained herein
are those of the authors and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or implied, of the ODNI,
IARPA, or the U.S. Government.

Georgia
Tech

IEEE/ACM CCGRID 2025

The 25 IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing
Tromsg, Norway

ActorlSx: Exploiting Asynchrony for Scalable
High-Performance Integer Sort

Youssef EImougy, Shubhendra Singhal, Akihiro Hayashi, and Vivek Sarkar

Thank you for your
attention!

@ o= Georgia
==L Tech

	Slide 1: ActorISx: Exploiting Asynchrony for Scalable High-Performance Integer Sort
	Slide 2: Integer and Data Movement Performance in HPC
	Slide 3: ISx: Addressing limitations of the original NPB IS
	Slide 4: ISx: High-Level Overview
	Slide 5: The 3 Challenges in Scalable Integer Sort:
	Slide 6: Our Vision: Fine-grained-Asynchronous Bulk-Synchronous Model (FA-BSP)
	Slide 7: Many distributed graph/non-graph algorithms can be implemented using our FA-BSP model
	Slide 8: ActorISx: Exploiting Asynchrony for Scalable High-Performance Integer Sort
	Slide 9: Experimental Setup and Architecture
	Slide 10: Dimensions of Scalability
	Slide 11: Weak Scaling Results on Perlmutter (up to 16k cores): CONSTANT max key (228): Unstable communication
	Slide 12: ISO Weak Scaling Results on Perlmutter (up to 16k cores): INCREASE max key (219 - 227): Stable communication
	Slide 13: Impact of the Solution
	Slide 14: DEMO
	Slide 15: You can try this at home... Just visit hclib-actor.com !
	Slide 16: ACKNOWLEDGEMENT
	Slide 17: Thank you for your attention!

