
ActorISx: Exploiting Asynchrony
for Scalable High-Performance
Integer Sort

Youssef Elmougy, Shubhendra Singhal, Akihiro Hayashi*, and Vivek Sarkar

Habanero Extreme Scale Software Research Lab

Georgia Institute of Technology

* Presenting Author: ahayashi@gatech.edu

IEEE CCGRID 2025
The 25th IEEE International Symposium on Cluster, Cloud and Internet Computing
Tromsø, Norway

• Integer sorting remains a critical operation in HPC, playing a vital role in
numerous applications

• Graph Analytics

• Distributed Sparse Linear Algebra

• Scientific Simulations

• and more!

• The Integer Sort (IS) kernel from the NAS Parallel Benchmark (NPB) has served
as a standard for assessing integer and data movement performance in HPC
systems since 90s

• Two-sided MPI-based Bucket Sort Algorithm with MPI_Alltoallv

2

Integer and Data Movement Performance in HPC

• The development of ISx addressed several limitations of the original NPB IS
benchmark by introducing OpenSHMEM’s one-sided communication

3

ISx: Addressing limitations of the original NPB IS

Platform: Edison @ NERSC (decommissioned)

The image has been altered from its original source for clarity and simplicity in presentation: https://www.github.com/ParRes/ISx

Research Question: Can we come closer to the IDEAL

performance on modern distributed HPC systems?

Absolute Timing:

Lower is better

Weak-Scaling Performance of the Key Exchange part of ISx (227 keys per PE)

IDEAL

https://www.github.com/ParRes/ISx

4

ISx: High-Level Overview

PE0

Bucket 0 (Range: 0-3)

1 5 8 2 3 9 7 4 6

PE1

Bucket 1 (Range: 4-7)

PE2

Bucket 2 (Range: 8-11)

Goal: Sort a distributed array on 3 PEs (Ranks) using the Bucket Sort Algorithm

Input: an unsorted array, Output: a sorted array

Step 1: Compute a target bucket (PE) by dividing each element by the bucket size (4)

0 1 2 0 0 2 1 1 1

Input:

Unsorted Array

Target Buckets

List

Send Buffer

Construction

To PE0 To PE1 To PE2 To PE0 To PE1 To PE2 To PE0 To PE1 To PE2

1 5 8 2, 3 ɸ 9 ɸ 7, 4, 6 ɸ

Step 2: Aggregate multiple integers with the same target PE

1 2 3 5 7 4 6 8 9

Step 4: Local Sort

Output:

Sorted Array 1 2 3 4 5 6 7 8 9

Step 3: All-to-All Exchange (Involves Communications)

Local

Work

Blocking

Comm

& Barrier

MAX_KEY_VALUE = 12

BUCKET_WIDTH = 12/ 3 = 4

5

The 3 Challenges in Scalable Integer Sort:

1

The larger the problem size, the more compute nodes are needed.

Problem Size

2 Irregular Messaging for Arbitrary Destinations

3
Bulk Synchronous Parallelism (BSP)

This paper studies the scalability of our actor-based approach to overcome the inherent

challenges of traditional programming models by performing large-scale integer sorting.

From To PE0 To PE1 To PE2 …

PE0 1 5 8

PE1 2, 3 ɸ 9

PE2 ɸ 7, 4, 6 ɸ

…

Barrier

Local

Work

Blocking

Comm

6

Our Vision: Fine-grained-Asynchronous Bulk-Synchronous
Model (FA-BSP)
• FA-BSP = PGAS + Actor-based asynchronous messaging + BSP

• Actor = PE = a thread/rank that owns a slice of the global address space
• Communications between PEs are achieved via asynchronous active

messages
• The extended barrier waits for all active messages to complete in a superstep

Partitioned Global Address Space

 PE0

MEM
…PE1

MEM

PEn

MEM

…

Async
Send

To PE0

Async
Send

To PE1

Extended Barrier (waits for all threads

& all active messages to complete)

Thread

Mailbox

process() {

 // update a local state
}

Local State

“A Fine-grained Asynchronous Bulk Synchronous

parallelism model for PGAS applications.” Sri Raj
Paul, Akihiro Hayashi, Kun Chen, Youssef

Elmougy, Vivek Sarkar. JCS 2023

Local Work

Async Active
Messages

• Our FA-BSP model is well-suited for graph and non-graph algorithms

• Bale Kernels (JCS’23)
• Histogram
• Index Gather
• Permute Matrix
• Random Permutation
• Transpose Matrix
• Triangle Counting
• Toposort

• Other Graph kernels
• Triangle Centrality (SCALE Challenge at CCGRID’24)
• Page Rank (SCALE Challenge at CCGRID’23)
• Jaccard Coefficients (ISC’24)
• Triangle Counting (SC’23 Poster)
• BFS

7

Many distributed graph/non-graph algorithms can be
implemented using our FA-BSP model

• IARPA AGILE Workflows
• Graph Neural Networks

• Pattern Matching (IPDPSW’25)

• K-mer Counting (IPDPS’25)

• Influence Maximization (SC’24)

8

ActorISx: Exploiting Asynchrony for Scalable High-
Performance Integer Sort

PE0

Bucket 0 (Range: 0-3)

1 5 8 2 3 9 7 4 6

PE1

Bucket 1 (Range: 4-7)

PE2

Bucket 2 (Range: 8-11)

ActorISx enables asynchronous point-to-point communication with application-level and

runtime-level message aggregation

Step 1: Compute a target bucket (PE) by dividing each element by the bucket size (4)

0 1 2 0 0 2 1 1 1

Input:

Unsorted Array

Target Buckets

List

Send Buffer

Construction

To PE0 To PE1 To PE2 To PE0 To PE1 To PE2 To PE0 To PE1 To PE2

1 5 8 2, 3 ɸ 9 ɸ 7, 4, 6 ɸ

Step 2: Aggregate multiple integers with the same target PE into fixed-size buffers

1 2 3 5 7 4 6 8 9

Step 4: Local Sort

Output:

Sorted Array 1 2 3 4 5 6 7 8 9

Step 3:Asynchronous All-to-All Exchange with Runtime Message Aggregation

Local

Computation

Async

Communication

Overlap!

MAX_KEY_VALUE = 12

BUCKET_WIDTH = 12/ 3 = 4

• Experiments conducted on the CPU nodes of the Perlmutter supercomputer at
the National Energy Research Scientific Computing Center (NERSC)

• 2x AMD EPYC 7763 (Milan) CPUs

• 64 physical cores per CPU

• 512 GB memory

• 1x HPE Cray Slingshot Interconnect

• Results for different dimensions

 of scalability are presented

Experimental Setup and Architecture

Picture borrowed from: https://docs.nersc.gov/systems/perlmutter/architecture/

9

https://docs.nersc.gov/systems/perlmutter/architecture/

The paper studies two weak-scaling scenarios from the original ISx:

Dimensions of Scalability

10

WEAK SCALING ISO WEAK SCALING

of cores Variable (26 - 214)

Keys per core Constant (227)

MAX_KEY_VALUE Constant (228) Variable (219 - 227)

BUCKET_WIDTH

= MAX_KEY_VALUE /

of cores

Variable (222 to 214) Constant (213)

Stability of Communication Unstable Stable

1 0 3 2

1 0 3 24 cores

2 cores

MAX_KEY_VALUE = 4

BUCKET_WIDTH = 4 / # of cores

1 0 3 2

1 0 3 2 4 5 6 74 cores

2 cores

MAX_KEY_VALUE = 4 - 8

BUCKET_WIDTH = 2

Unstable (depends on # of cores) Stable (independent of core count)

No communication
Example

(Ultimate Case)
No communication

No communication

11

Weak Scaling Results on Perlmutter (up to 16k cores):
CONSTANT max key (228): Unstable communication

Absolute Timing:

Lower is better
Speedup of ActorISx:

Higher is better

• ActorISx achieves almost an ideal weak-scaling result thanks to
• Asynchronous communication
• Two-level message aggregation
• Multi-hop routing

IDEAL

227 keys per core => 233 keys (64 cores), 241 keys (16k cores)

12

ISO Weak Scaling Results on Perlmutter (up to 16k cores):
INCREASE max key (219 - 227): Stable communication

• ActorISx achieves almost an ideal weak-scaling result thanks to
• Asynchronous communication
• Two-level message aggregation
• Multi-hop routing

Absolute Timing:

Lower is better
Speedup of ActorISx:

Higher is better

227 keys per core => 233 keys (64 cores), 241 keys (16k cores)

• Our algorithm has shown efficient scalability and performance

• The extensibility of this algorithm has four major impacts:

Impact of the Solution

By leveraging the actor model, we have addressed the fundamental

limitations of NPB IS while maintaining high performance and scalability

Our algorithm can be applied to other data-intensive and

communication-intensive applications

Our actor-based approach is a viable alternative to traditional MPI-based

and SHMEM-based approaches

Our solution shows that actor-based approaches will play an

increasingly important role in future HPC systems

1

2

3

4

13

DEMO

ActorISx: Exploiting Asynchrony for Scalable High-Performance Integer Sort

14

You can try this at home... Just visit hclib-actor.com !

15

This research is based upon work supported by the Office of the Director of
National Intelligence (ODNI), Intelligence Advanced Research Projects Activity

(IARPA), through the Advanced Graphical Intelligence Logical Computing
Environment (AGILE) research program, under Army Research Office (ARO)

contract number W911NF22C0083. The views and conclusions contained herein
are those of the authors and should not be interpreted as necessarily representing

the official policies or endorsements, either expressed or implied, of the ODNI,
IARPA, or the U.S. Government.

ACKNOWLEDGEMENT

16

Thank you for your
attention!

ActorISx: Exploiting Asynchrony for Scalable
High-Performance Integer Sort

Youssef Elmougy, Shubhendra Singhal, Akihiro Hayashi, and Vivek Sarkar

Habanero Extreme Scale Software Research Lab

Georgia Institute of Technology

IEEE/ACM CCGRID 2025
The 25th IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing

Tromsø, Norway

	Slide 1: ActorISx: Exploiting Asynchrony for Scalable High-Performance Integer Sort
	Slide 2: Integer and Data Movement Performance in HPC
	Slide 3: ISx: Addressing limitations of the original NPB IS
	Slide 4: ISx: High-Level Overview
	Slide 5: The 3 Challenges in Scalable Integer Sort:
	Slide 6: Our Vision: Fine-grained-Asynchronous Bulk-Synchronous Model (FA-BSP)
	Slide 7: Many distributed graph/non-graph algorithms can be implemented using our FA-BSP model
	Slide 8: ActorISx: Exploiting Asynchrony for Scalable High-Performance Integer Sort
	Slide 9: Experimental Setup and Architecture
	Slide 10: Dimensions of Scalability
	Slide 11: Weak Scaling Results on Perlmutter (up to 16k cores): CONSTANT max key (228): Unstable communication
	Slide 12: ISO Weak Scaling Results on Perlmutter (up to 16k cores): INCREASE max key (219 - 227): Stable communication
	Slide 13: Impact of the Solution
	Slide 14: DEMO
	Slide 15: You can try this at home... Just visit hclib-actor.com !
	Slide 16: ACKNOWLEDGEMENT
	Slide 17: Thank you for your attention!

