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O There is a need for parallel computing resources to meet the computational and
memory requirements

It is important to develop scalable and

lightweight systems to efficiently process |
large-scale network topologies! G- §eorgia
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The Necessity for Large-Scale Analysis

Criticality of analyzing components within the network topology to identify sources
of vulnerabilities, inefficiencies, and possible breakdowns, with potential impact
on individual and organizational users depending on the internet for day-to-day
operations

CONSIDER A GLOBAL CLOUD SERVICE PROVIDER

€9 BB Microsoft
B Azure

1M servers 200 datacenters

operates across several datacenters in multiple continents

which manages diverse arrays of clients relying on networks of routers, switches, and computing devices

with unique agreements
and connectivity requirements Yo DISRUPTIONS 0 '@
) as a result of performance bottlenecks, _
£© component failures, or security breaches Gr Gngff‘a
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Augmenting network size and complexity

\increasing network size and complexity

Fault tolerance and security

This paper studies the scalability of our novel algorithm to overcome the inherent Georgia

challenges of internet provision by performing large-scale network topology analysis!
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Current Approaches are NOT Efficient for Scalable and
Distributed Processing

Current approaches [21.I5LI6LI7LI8LIOT ||

are designed and optimized for smaller scale networks and graphs

are limited in scalability due to their application of sequential or inefficient algorithms

CHALLENGE

Makes it difficult to process the expansive and intricate dynamic web of interconnected
devices constituting the modern internet

Gr Georgia
Tech.



Backend Actor-based Scalable Architecture

Sample Graph Distributed Actor Runtime Execution Model
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Partitioned Global Address Space

* Presents a lightweight, asynchronous computation model

Utilizes fine-grained asynchronous actor messages to express point-to-point remote operations

Treats actors as primitives of computation, where actors are inherently isolated and share no mutable state
Actors process messages sequentially within its mailbox, thereby avoiding data races and synchronization
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Distributed, Asynchronous, and Scalable Actor-Based
Centrality for Internet Network Topology Analysis

Tailored for internet network topology analysis at a massive scale

We leverage the inherent formations of triangles to explore the structural importance of
individual nodes and the intricate relationships among interconnected entities

Triangle Centrality:

finds the important (central) nodes within a If a HW comp. is connected to two other HW comps.,
graph based on the concentration of triangles and these two other HW comps. as well are connected,
surrounding each node then the trio of comps. is more cohesive

Important nodes are at the center of many / M ) i ‘

triangles, thus, being present in many

triangles or none M m
That concentration of triangles is a rep. of \ “

augmented network density, permitting the
flow and spread of the influence of data more i i ‘ i | ‘
rapidly through the connections Gl" %eoi'lgla
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Tailored for internet network topology analysis at a massive scale

Given an undirected network of entities, a graph ¢ = (V, E) with  |V| vertices |E| edges

where
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Distributed, Asynchronous, and Scalable Actor-Based
Centrality for Internet Network Topology Analysis

Tailored for internet network topology analysis at a massive scale

Given an undirected network of entities, a graph ¢ = (V, E) with  |V| vertices |E| edges
where
sum of A for sum of A for
triangle neighbors non-triangle neighbors

N (v) is the set of neighbors of v

| § | | | § 1
NA () is the set of neighbors in -+
A(v) triangles withgv e = 3 ZuENX(v) A(u) + ZWE{N(U)\NA(D)} A(w)
A(G)

Ny (v) is the closed set including v
A(v) is the triangle count of v
A(G) is the triangle count of ¢
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Distributed, Asynchronous, and Scalable Actor-Based
Centrality for Internet Network Topology Analysis

> Perform the main computation

A(G) = TRICOUNTACTOR(L) > Compute global tricount

for {l,. € L} do

3 EueNl_(v) A(u)
A(G)

if {u € Na(v)} then > Compute
> Send an active message to processl (non-blocking)
Actorp.send(1,FINDOWNER(Ly,), u, v, A(G), 3)

A(u
else > Compute Z"‘E‘[N(’U)\NA('v)} (u)

Actory.send(1,FINDOWNER(Ly,), u, v A(G) 1)
TC(v) += L},’A('v)/A(G)

WAIT()

return 7C
function TRICENTACTORPROCESS1(u, v, A(G), mult)
> The process] message handler

mic < mult x A(u)/A(G)
> Send an active message to process2 (non-blocking)

Actorp.send(2,FINDOWNER(Ly), v, m¢c)

function TRICENTACTORPROCESS2(v, myc)

> The process2 message handler
TC(v) += myc

> Wait for the completion of local send/recv

Notation: Let r, be the local rank, L be the local rows of L owned by Tp, C
be the local counter owned by 7, Actor;, denote the actor instance that
is running on 7, NA be the local array of lists holding set of neighbors
in triangles with local rows owned by r,, T'C' be the local rows of the
triangle centrality matrix owned by 7,, A(G) be the global triangle count.

send Semantics: Actor.send (proc handler, rank, packet)

Gr Georgia
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Distributed, Asynchronous, and Scalable Actor-Based
Centrality for Internet Network Topology Analysis

: function TRICENTACTOR(L > Perform the main computation Notation: Let 7, be the local rank, L be the local rows of L owned by 7, ¢
A(G) = TRICOUNTACTOR(L) > Compute global tricount be the local counter owned by 7, Actor;, denote the actor instance that
; et 1s runnmg on rp, N A be the local array of lists holding set of neighbors
v ownad by rp, T'C be the local rows of the
: function TRICOUNTACTOR(L) ps f(i)lbe the globil tﬂangli Col;nt
¢ handler, rank, packet
> Send an active message to for {lvw, lou € Lu<w< v} do :
> Send an active message to processl (non-blocking)
Actorp.send(1,F
: Actorp.send(1,FINDOWNER(L ), v, w, u)
else : WAIT()
ACtO"’p-iend(laF : return ALLREDUCE(c)
TC(v) += 3A(v)/4 22: function TRICOUNTACTORPROCESS1 (v, w, u)
WAIT() : if {l,yu € L} then
return 7C : c+=1
function TRICENTACTORP > Send an active message to process2 (non-blocking)
> The processl message ha : Actorp.send(2,FINDOWNER(Ly ), v, w, u)
mtc < mult x A(u)/L 26: Actorp.send(2,FINDOWNER(L,), w, v, u)
> Send an active message to | 27: Actorp.send(2,FINDOWNER(L,,), u, v, w)
Actorp.send(2,FINDO . function TRICOUNTACTORPROCESS2(3, 7, k)
: function TRICENTACTORP : A7) +=1
> The process2 message ha . Na () < Na(i) U{j, k}
TC(v) += myc

: function FINDOWNER(row) > Returns a rank responsible for row

return row % P > 1-D Cyclic distribution
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: function TRICENTACTORP

Distributed, Asynchronous, and Scalable Actor-Based
Centrality for Internet Network Topology Analysis

: function TRICENTACTOR(L > Perform the main computation Notatio .
> Compute global tricount Loop through local edges and grab trio of
0T Ty 10 vertices ({v, w,u}) to check for a triangle
17: function TRICOUNTACTOR(L) p» A(G) be the global triangle count.
s Send hn cfive message:t 18: for {lvw,.lvu € Liu<w<v}do | c handler, rank, packet)
Actory.send(1,F > Send an active message to processl (non-blocking)
E 19: Actorp.send(1,FINDOWNER (L), v, w, u)
else 20:  WAIT()
Actorp.send(1,F 21:  return ALLREDUCE(c)
TC(v) += 3A(v)/4 22: function TRICOUNTACTORPROCESS 1 (v, w, )
WAIT() 23: if {ly € L} then
return 7C 24: c+=1
function TRICENTACTORP > Send an active message to process2 (non-blocking)
> The processl message han 25: Actorp.send(2,FINDOWNER(Ly ), v, w, u)
mic < mult x A(u)/L 26: Actorp.send(2,FINDOWNER(L,), w, v, u)
> Send an active message to 27: Actorp.send(2,FINDOWNER(L,,), u, v, w)

Actorp.send(2,FINDO

28: function TRICOUNTACTORPROCESS2(%, 7, k)

29: A(i) +=1

30:  Na(i) < Na(i) U{j k}

31: function FINDOWNER(row) > Returns a rank responsible for row
return row % P > 1-D Cyclic distribution

> The process2 message h
TC(v) += myc
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Distributed, Asynchronous, and Scalable Actor-Based
Centrality for Internet Network Topology Analysis

: function TRICENTACTOR(L > Perform the main computation Notatio. .
A(G) = TRICOUNTACTOR(L) > Compute global tricount LOOP through local edges and grab. trio of
0T Ty 10 vertices ({v,w, u}) to check for a trlangle
17: function TRICOUNTACTOR(L) AL et el o
; 18:  for {lvw,lvu € L,u < w < v} do Send a non-blocking fine- gralned
> Send an active message t )
A > Send an active message to processl (non-blocking) active message to remote vertex
ctorp.send(1,F /
19: Actory.send(1,FINDOWNER (L), v, W, u) owner
else 20:  WAIT() P§
Actorp.send(1,F 21:  return ALLREDUCE(c) \“50\"
TC(v) += 3A(v)/4 22: function TRICOUNTACTORPROCESS1 (v, w, u) 4~
WAIT() 23: if {lyu € L} then
return 7C 24: c+=1
function TRICENTACTORP > Send an active message to process2 (non-blocking)

> The processl message h
mic — mult * A(u)/
> Send an active message t
Actorp.send(2,FINDO

25: Actorp.send(2,FINDOWNER(Ly), v, w, u)
26: Actorp.send(2,FINDOWNER(L.,), w, v, u)
27 Actorp.send(2,FINDOWNER(L,,), u, v, w)

28: function TRICOUNTACTORPROCESS2(%, 7, k)

29: A(i) +=1

30:  Na(i) < Na(i) U{j k}

31: function FINDOWNER(row) > Returns a rank responsible for row
return row % P > 1-D Cyclic distribution

> The process2 message h
TC(v) += myc
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: function TRICENTACTORP

Distributed, Asynchronous, and Scalable Actor-Based
Centrality for Internet Network Topology Analysis

: function TRICENTACTOR(L > Perform the main computation Notatio .
> Compute global tricount Loop through local edges and grab trio of
0T Ty 10 vertices ({v,w, u}) to check for a triangle
17: function TRICOUNTACTOR(L) AL et
> Send b active meseage tcl 18 for {lvw,lvw € L,u < w < v} do | Send a non-blocking fine- gralned
Actorp.send(1,F > Send an active message to processl (non-blocking) / active message to remote vertex
19: Actory.send(1,FINDOWNER (L), v, W, u) owner
else 20: WAIT() §\
Actorp.send(1,F 21:  return ALLREDUCE(c) wgo"‘h I
TC(v) += 5A(v)/4 22: function TRICOUNTACTORPROCESS1 (v, w, ) 4~ If triangle present, increment local
23: if {l,. € LY then ’
Xﬁf,(,)Tc 24 {c -1 J counter and send non-blocking
function TRICENTACTORP > Send an active message to process2 (non-blocking) fine_g rained active messages to
> The processl message han 25: Actorp.send(2,FINDOWNER(Ly ), v, w, u)

26: Actorp.send(2,FINDOWNER(Ly,), w, v, u) each O.f v,w,u to update Fhe'r
27: Actorp.send(2,FINDOWNER(Ly, ), u, v, w) vertex triangle count and triangle

28: function TRICOUNTACTORPROCESS2(%, j, k) ¢ — — — neighbor lists
29: A(i) +=1 MSG HANDLER
30 Na(i) < Na(d) U{j, k}

31: function FINDOWNER(row) > Returns a rank responsible for row
return row % P > 1-D Cyclic distribution

mic — mult * A(u)/
> Send an active message t
Actorp.send(2,FINDO

> The process2 message h
TC(v) += myc
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Distributed, Asynchronous, and Scalable Actor-Based
Centrality for Internet Network Topology Analysis

1: function TRICENTACTOR(L > Perform the main computation Notatio .
2 A(G) = TRICOUNTACTOR(L) > Compute global tricount . Loop through local edges and grab trio of
3 . 7 vertices ({v,w, u}) to check for a trlangle
4 17: function TRICOUNTACTOR(L) AL et

: R 18:  for {lvw,lvu € L,u < w < v} do Send a non-blocking fine- gralned

> Send an active message t :

. > Send an active message to processl (non-blocking) active message to remote vertex

5t Actorp.send(1,F /
19: Actorp.send(1,FINDOWNER(L ), v, w, u) owner

6: else 20: WAIT() P&\
7. Actorp.send(L,F| 2 return ALLREDUCE(c) wq,e\)\ I
8: TC(v) += 3A(v) : function TRICOUNTACTORPROCESS1(v, w, u) 4~

> Send an active message t
13:  Actoryp.send(2,FINDO

14: function TRICENTACTORP
> The process2 message h

TC(v) += myc

15:

: function TRICOUNTACTORPROCESS2(%, J, k) qu o o —

: function FINDOWNER(row)

Actorp.send(2,FINDOWNER(Ly,), w, v, u)
Actorp.send(2,FINDOWNER(L,,), u, v, w)

If triangle present, increment local

. : 3: if {l € L} then .
| Await completion of all |;. c iz 1 counter and send non-blocking
1 local sends and > Send an active message to process2 (non-blocking) fine-grained active messages to
| receives ! Actorp.send(2,FINDOWNER(Ly), v, w, u) each of v, w, u to update their

vertex triangle count and triangle
neighbor lists

A(i) +=1
Na(#) <= Na(2) U {5, k}

MSG HANDLER

return row % P

> Returns a rank responsible for row
> 1-D Cyclic distribution

Georgia
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Distributed, Asynchronous, and Scalable Actor-Based
Centrality for Internet Network Topology Analysis

1: function TRICENTACTOR(L

2 A(G) = TRICOUNTACTOR(L) > Compute global tricount
3: |
4 17: function TRICOUNTACTOR(L)

> Send an active message t ks: for {lvw, lou € L,u <w < v} do :
2 Actory.send(1,F > Send an active message to processl (non-blocking)

& "1 19: Actory.send(1,FINDOWNER (L), v, W, u) /

6: else 20: WAIT() P&\
7. Actorp.send(L,F| 2 return ALLREDUCE(c) wg:,c'»“\
8: TC(v) += 3A(v) ction TRICOUNTACTORPROCESS1(v, w, u) 4~

Await completion of all
local sends and
receives

> Send an active message t

13:  Actoryp.send(2,FINDO

9:
0:
1:
32:

Returns global
reduced triangle count

> Perform the main computation Notatio

Loop through local edges and grab trio of
vertices ({v,w, u}) to check for a triangle

I AN L b Aol e 1

Send a non-blocking fine- gralned
active message to remote vertex

owner

if {lyu € L} then

c+=1
Send an active message to process2 (non-blocking)
Actorp.send(2,FINDOWNER(Ly ), v, w, u)
Actorp.send(2,FINDOWNER(Ly,), w, v, u)
Actorp.send(2,FINDOWNER(L,,), u, v, w)

: function TRICOUNTACTORPROCESSZ(Z 1K) = o —

If triangle present, increment local
counter and send non-blocking
fine-grained active messages to

each of v, w, u to update their
vertex triangle count and triangle
neighbor lists

A(i) +=1 MSG HANDLER
Na (%) = Na(i) U {j, k}

function FINDOWNER(row)
return row % P

> Returns a rank responsible for row
> 1-D Cyclic distribution
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Tech.

Cr

12



ol g

12:

13:
14:

15:

SO o v S

Distributed, Asynchronous, and Scalable Actor-Based
Centrality for Internet Network Topology Analysis

: function TRICENTACTOR(L)

> Perform the main computation

A(G) = TRICOUNTACTOR(L) > Compute global tricount

for {l,. € L} do

% E'u,EN_*_('u) A(u)

if {u € Na(v)} then > Compute A(AG)

> Send an active message to processl (non-blocking)
Actorp.send(1,FINDOWNER(Ly,), u, v, A(G), 3)

Zue{N(v)\NA(v)} A(u)

else > Compute
Actory.send(1,FINDOWNER(Ly,), u, v A(G) 1)
TC(v) += éA(v)/A(G’)
WAIT() > Wait for the completion of local send/recv
return 7C
function TRICENTACTORPROCESS1(u, v, A(G), mult)
> The process] message handler
mic < mult x A(u)/A(G)
> Send an active message to process2 (non-blocking)
Actorp.send(2,FINDOWNER(Ly), v, m¢c)

function TRICENTACTORPROCESS2(v, myc)

> The process2 message handler
TC(v) += myc

Cr
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Distributed, Asynchronous, and Scalable Actor-Based
Centrality for Internet Network Topology Analysis

: function TRICENTACTOR(L) > Perform the main computation - :
A(G) = TRICOUNTACTOR(L) > Compute global tricount Sum of the. A for the triangle neighbors
for {l,, € L} do Send non-blocking message to remote vertex
. 5 X ent () AW owner
if {u € Na(v)} then > Compute A(AG)

> Send an active message to processl (non-blocking)
Actorp.send(1,FINDOWNER(Ly,), u, v, A(G), 3)

A(u
else > Compute Z"‘E{N(’U)\NA('v)} (u)

Actory.send(1,FINDOWNER(Ly,), u, v A(G) 1)
TC(v) += éA(’U)/A(G)
WAIT() > Wait for the completion of local send/recv
return 7C
function TRICENTACTORPROCESS1(u, v, A(G), mult)
> The process] message handler
mic < mult x A(u)/A(G)
> Send an active message to process2 (non-blocking)
Actorp.send(2,FINDOWNER(Ly), v, m¢c)

function TRICENTACTORPROCESS2(v, myc)

> The process2 message handler
TC(v) += myc
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Distributed, Asynchronous, and Scalable Actor-Based
Centrality for Internet Network Topology Analysis

: function TRICENTACTOR(L > Perform the main computation : :
A(G) = TRICOUNTAE:T)OR(L) > Compute global I:ricount Sum of the. A forthe triangle neighbors
for {1y, € L} do Send non-blocking message to remote vertex
. 5 Zent () A owner
if {u € Na(v)} then > Compute A(AG)
> Send an active message to processl (non-blocking) / Sum of the A for the non-triangle neighbors
Actorp.send(1, FINDOWNER(Lu),u v, A(G), 5) Send non-blocking message to remote vertex
else > Compute uE{N(v)A\(AC;A(:)}/' owner
Actorp.send(1,FINDOWNER(L,,), u, v, A(G), 1)
TC(v) += LAW)/A(G) - 5
WAIT() > Wait for the completion of loc?ll \?\i,
return 7C ®

function TRICENTACTORPROCESS1(u, v A(G),mult)*
> The process] message handler
mic < mult x A(u)/A(G)
> Send an active message to process2 (non-blocking)
Actorp.send(2,FINDOWNER(Ly), v, m¢c)

function TRICENTACTORPROCESS2(v, myc)

> The process2 message handler
TC(v) += myc

Gr Georgia
Tech.

13



ol g

12:

13:
14:

15:

: function TRICENTACTOR(L)

SO o v S

Distributed, Asynchronous, and Scalable Actor-Based
Centrality for Internet Network Topology Analysis

> Perform the main computation
A(G) = TRICOUNTACTOR(L) > Compute global tricount
for {l,. € L} do

1
3 EuENI(v) Alfes)

if {u € Na(v)} then > Compute

Sum of the A for the triangle neighbors
Send non-blocking message to remote vertex
owner

A(G)
> Send an active message to processl (non-blocking)

Actory.send(1, FINDOWNER(Lu),’u, v, A(G), 3)
else 2 ue{N@\Np ()} 2

> Compute A(G) /

Sum of the A for the non-triangle neighbors
Send non-blocking message to remote vertex
owner

Actorp.send(1,FINDOWNER(L,,), u, v, A(G), 1)
TC(v) += :A(v)/A(G) <= \x
Q\?‘

Addition of the vertex within the final

WAIT() W oV
return 7C
function TRICENTACTORPROCESS1(u, v A(G’),mult)*
> The process] message handler
mic < mult x A(u)/A(G)
> Send an active message to process2 (non-blocking)
Actorp.send(2,FINDOWNER(Ly), v, m¢c)

function TRICENTACTORPROCESS2(v, myc)

> The process2 message handler
TC(v) += myc

> Wait for the completion of IOC}I/

triangle centrality
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15:

: function TRICENTACTOR(L)

SO o v S

Distributed, Asynchronous, and Scalable Actor-Based
Centrality for Internet Network Topology Analysis

A(G) = TRICOUNTACTOR(L)
for {l,. € L} do

> Perform the main computation
> Compute global tricount

1
3 ZuENI(’u) Alfes)

Sum of the A for the triangle neighbors
Send non-blocking message to remote vertex
owner

if {u € Na(v)} then > Compute
> Send an active message to processl (non-blocking)
Actorp.send(1, FINDOWNER(LU),U, v, A(G), 3)

A(G)

2ue{N(»)\Na ()} 2

Sum of the A for the non-triangle neighbors
Send non-blocking message to remote vertex

else > Compute A(G)
Actorp.send(1,FINDOWNER(L,,), u, v, A(G), 1)
TC(v) += :A(v)/A(G) <=

/

owner

Addition of the vertex within the final

WAIT()

> Wait for the completion of IOC}I/
return 7C

\;
Q\?‘
60

triangle centrality

function TRICENTACTORPROCESS1(u, v A(G’),mult)*
> The process] message handler
mic < mult x A(u)/A(G)
> Send an active message to process2 (non-blocking)
Actorp.send(2,FINDOWNER(Ly), v, m¢c)

function TRICENTACTORPROCESS2(V, Mitc) qum == = = = °

Do the calculation depending on packet
variables and send a non-blocking
message to v to increment final triangle
centrality

> The process2 message handler MSG HANDLER
TC(v) += mtc

Georgia
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Distributed, Asynchronous, and Scalable Actor-Based
Centrality for Internet Network Topology Analysis

1: function TRICENTACTOR(L)
2 A(G) = TRICOUNTACTOR(L)
3: for {l,. € L} do

> Perform the main computation
> Compute global tricount

% Z'u,EN_i_('u) Alfes)
4: if {u € Na(v)} then > Compute A(AG)

> Send an active message to processl (non-blocking)

Sum of the A for the triangle neighbors
Send non-blocking message to remote vertex
owner

Sum of the A for the non-triangle neighbors
Send non-blocking message to remote vertex
owner

Addition of the vertex within the final

triangle centrality

o Actorp.send(1, FINDOWNER(LU),U, v, A(G), 3)
6 else > Compute uE{N(v)A\(ZZ;A(:)}/'
i Actorp.send(1,FINDOWNER(L,,), u, v, A(G), 1)
8: TC(v) += 1 3AW)/A(G) <+ \§
9 WAIT() > Wait for the completion of IOC}I/ 60\(*
10: / return TC 73
11: function TRICENTACTORPROCESS1(u, v, A(G), mult) *
The process] message handler

1

<
N

Await completion of all
1 local sends and R(Ly), v, Mic)
1 receives CESS2(V, Mitc) g = = = =

pcess2 (non-blocking)

Do the calculation depending on packet
variables and send a non-blocking
message to v to increment final triangle

centrality

> INE processZ message nandler MSG HANDLER
15: TC(v) += myc
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Distributed, Asynchronous, and Scalable Actor-Based
Centrality for Internet Network Topology Analysis

1: function TRICENTACTOR(L)

> Perform the main computation

Sum of the A for the triangle neighbors
Send non-blocking message to remote vertex
owner

2 A(G) = TRICOUNTACTOR(L) > Compute global tricount
3: for {l,. € L} do
3> 4.y Au)
. 'U'ENA (v)
4: if {u € Na(v)} then > Compute

A(G)
> Send an active message to processl (non-blocking)

Sum of the A for the non-triangle neighbors

3: Actorp.send(1, FINDOWNER(Lu),u v, A(G), 5) Send non-blocking message to remote vertex
6 else > Compute ue{N(v)A\(]Z?A(:)}/' owner
i Actorp.send(1,FINDOWNER(L,,), u, v, A(G), 1)
8: TC(v) += 2A(v)/A(G) <= \@v Addition of the vertex within the final
9: WAIT() > Wait for the completion o loc:}llwéo‘e‘ﬁ/ triangle centrality
10/ return TC %= Return triangle centrality | ,
11: function TRICENThrerorr wocmoorwy vy mroryy oo ) . .
The process] messape handler Do the calculation depending on packet

1

<
N

Await completion of all

pcess2 (non-blocking)
local sends and

1 R(Lv),v, mtc)

variables and send a non-blocking
message to v to increment final triangle
centrality

1 receives CESS2(0, M) 4= = = = =
> INe processZ message nandler MSG HANDL
15: TC('U) += Mic
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Experimental Setup and Architecture

» Experiments conducted on the CPU nodes of

* The Perlmutter Supercomputer at the National Energy Research Scientific Computing Center
(NERSC)

« Each CPU node: 2x AMD EPYC 7763 (Milan) CPUs, 64 physical cores per CPU, 512 GB memory

 The HPC PACE Cluster at Georgia Tech
« Each CPU node: Dual Intel Xeon Gold 6226 CPUs, 24 total physical cores, 192 GB memory

« We present results using speedup of execution time compared to single core
« We use four large-scale internet network datasets:

« A Routers Network Dataset (V| = 191K, |E| = 608K)
« An IP Addresses Network Dataset (V| = 2.3M, |E| = 21.6M)
« An Autonomous Systems Network Dataset (V]| = 1.7M, |E| = 11.1M)
A Synthetic Network Dataset (100K rows/core for weak scaling, |V| = 205M,
E| = 13.9B at largest scale)

 Results for different dimensions of scalability are presented

Gr Georgia
Tech.
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Dimensions of Scalability

(1) SCALE-OUT (2) SCALE-UP

‘iiii ame awm s cas EER

e e e . -
- == i [ s o
= —__ i T — SCALE-UP,

- s Emm - |
core/node to
i‘e‘”sv': i=PY= i=PY= i=PY= ﬂ E 128 cores/node)

increasing #nodes (SCALE-OUT, from 1 to 2,048 cores) ﬂ
(1) WEAK SCALING (2) STRONG SCALING

increasing graph size (synthetic dataset, 100K vertices per core) constant graph size & Georgla

. (Routers dataset, IP dataset, ASes dataset) Tech
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Speedup Compared to 1 Core

Performance Results: Scalability for SCALE-OUT ==

Routers Dataset

Strong Scaling

—O6— Selector (PACE)
—&— ;SeIIE?IEor (Perlmutter)

Speedup Compared to 1 Core

Speedup Compared to 1 Core

16 32 64 128 256 512

Number of Cores
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elector (Perimutter)
EAL

IPs Dataset .
Strong Scaling .
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—&— Selector (Perlmutter)
IDEAL

—O— Selector (PACE)
—&— Selector (Perimutter)
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Number of Cores

Synthetic Dataset Y
—_—

Weak Scaling

Speedup Compared to 1 Core
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Speedup Compared to 1 Core

Speedup Compared to 1 Core
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91.7% parallel
efficiency on PACE
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Performance Results: Scalability for SCALE-UP

Speedup Compared to 1 Core

Speedup Compared to 1 Core
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Performance Results: Scalability for SCALE-UP -

Speedup Compared to 1 Core
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Performance Results: Scalability for SCALE-UP -

Speedup Compared to 1 Core

Speedup Compared to 1 Core
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Performance Results: Scalability for SCALE-UP -

Speedup Compared to 1 Core
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Performance Results: Scalability for SCALE-UP -

Speedup Compared to 1 Core

Speedup Compared to 1 Core
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