EEE/ACM CCGRID 2023

The 23rd IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing

Highly Scalable Large-Scale Asynchronous Graph Processing using Actors

Youssef Elmougy*, Akihiro Hayashi, and Vivek Sarkar Georgia Institute of Technology, Atlanta GA USA

* Corresponding Author and Presenting Author

The Growth of Big Data

INFORMATION CREATED GLOBALLY 2010-2025

Picture borrowed from: https://www.iteratorshq.com/blog/big-data-business-impacts/

Graph algorithms have become increasingly important for solving problems in many computational domains

The scale of these graphs present difficulties to their processing and analysis!

□ There is a need for parallel computing resources to meet the computational and memory requirements

Existing algorithms and software that perform well for mainstream parallel scientific applications are not necessarily efficient for large-scale graph applications

It is critical to develop lightweight and scalable systems to efficiently process large-scale graphs!

The 4 Overarching Challenges in Parallel Graph Processing

This paper studies the scalability of our novel actor-based programming system to overcome the inherent challenges of large-scale graph processing!

Sample Graph

Execution Model

- Presents a lightweight, asynchronous computation model
- Utilizes fine-grained asynchronous actor messages to express point-to-point remote operations
- Treats actors as primitives of computation, where actors are inherently isolated and share no mutable state
- Actors process messages sequentially within its mailbox, thereby avoiding data races and synchronization

NOTE: "Actor" and "Selector" will be used interchangeably

SOLUTION

Distributed Actor Runtime

Local Memory

The 4 overarching challenges of parallel graph processing:

SOLUTION

- Fine-grained Asynchronous Bulk-Synchronous (FABS) Parallelism model
- Reduces barriers and time spent idling at barriers, further reducing stall cycles

SOLUTION

Execution Model

- As actor messages are executed, the local state of the actor is updated, allowing the next received actor message to utilize the updated state within the same super-step
- Updates the neighboring vertices with most recent values within the same iteration

Showing the System's Extreme Scalability with PageRank & Jaccard Index

We focus on PageRank and Jaccard Index due to two reasons:

- 1. They show iterative vs non-iterative application types
- 2. They have been applied to many real-world problems with social impact

Experimental Setup and Architecture

- Metrics: execution time (in seconds) and traversed edges per second (TEPS)
- Experiments conducted on the CPU nodes of the **Perlmutter supercomputer** at the National Energy Research Scientific Computing Center (NERSC)
 - 2x AMD EPYC 7763 (Milan) CPUs
 - 64 physical cores per CPU
 - 512 GB memory
 - 1x HPE Cray Slingshot Interconnect
- Results for different dimensions of scalability are presented

Package 1#0			Package L#1			
Group0	Groupi		Group0		GroupD	
MIMANode L#0 P#0 (62(38)	MUMANode L#1 P#1 (63CB)		MUMANode L#4 P#4 (63G	3)	MUMANode L#5 P#5 (63GB)	
L3 (32MB)	L3 (32MB)	L3 (32MB)	L3 (32MB)		L3 (32MB)	
12 (512KB) 1.2 (512KB) Rx total 12 (512KB)	12 (512RB) L2 (512RB) Bx total 12 (512RB	b) L2 (512KB) L2 (512KB) Bx total L2 (512KB)	L2 (512KB) L2 (512KB	Bx total L2 (5128B)	12 (512KB) L2 (512KB) Bx total	L2 (512K
Lld (32KB) Lld (32KB) Lld (32KB)	L1d (32RB) L1d (32RB) L1d (32RB)	8) L1d (32KB) L1d (32KB) L1d (32KB)	L1d (32KB) L1d (32KB) L1d (32KB)	L1d (32KB) L1d (32KB)	11d (328
Lli (32KB) Lli (32KB) Lli (32KB)	L11 (32RB) L11 (32RB) L11 (32RB)	b) L11 (32KB) L11 (32KB) L11 (32KB)	L11 (32KB) L11 (32KB) L1i (32KB)	L11 (32KB) L11 (32KB)	L11 (32K
Core L#0 Core L#1 Core L#7	Core L#16 Core L#17 Core L#23	Core L#24 Core L#25 Core L#31	Core L#64 Core L#65	Core L#71	Core L#80 Core L#81	Core Las
L3 (32MB)	0.2 0.2 PTI 41:00.0		L3 (32MB)		L3 (32MB)	
12 (512KB) 12 (512KB) 12 (512KB) 8x total	Not: nmn0		L2 (512KB) L2 (512KB	8x total	L2 (512KB) L2 (512KB) Bx total	12 (5128
L1d (32KB) L1d (32KB) L1d (32KB)			L1d (32KB) L1d (32KB) IId (32KB)	L1d (32KB) L1d (32KB)	L1d (32)
L11 (32KB) L11 (32KB) L11 (32KB)			L11 (32KB) L11 (32KB) Ili (32KB)	L11 (32KB) L11 (32KB)	L11 (32F
Core L#9 Core L#15			Core L#72 Core L#73	Core L#79	Core L#88 Core L#89	Core L#
Group0		Gzoupū	Group0		Group0	
MIMANode L#2 P#2 (63GB)		NUMANoda L#3 P#3 (63GB)	MUMANode L#6 P#6 (63C	3)	NUMANode L#7 P#7 (63GB)	
L3 (32MB)	L3 (32MB)	L3 (32MB)	L3 (32MB)		L3 (32MB)	
	L2 (512KB) L2 (512KB) L2 (512KB)	L2 (512KB) L2 (512KB) By Lot al L2 (512KB)	L2 (512KB) L2 (512KB	12 (512KB)	L2 (512KB) L2 (512KB)	L2 (51.28
12 (512KB) L2 (512KB) By total L2 (512KB)						
L2 (512KB) L2 (512KB) L2 L12 L13 L1	Lld (32KB) Lld (32KB) Lld (32KB)	L1d (32KB) L1d (32KB) L1d (32KB)	Lid (32KB) Lid (32KB) IId (32KB)	L1d (32KB) L1d (32KB)	L1d (32)
Re total	L1d (32KB) L1d (32KB) L1d (32KB) L1i (32KB) L1i (32KB) L1i (32KB)	L1d (32KB) L1d (32KB) L1i (32KB) L1i (32KB)	Lld (32KB) Lld (32KB Lli (32KB) Lli (32KB		L1d (32RB) L1d (32RB) L1i (32RB) L1i (32RB)	
Rx total Lld (32KB) Lld (32KB)						L11 (32)
Lid (32KB) Lid (32KB) Lid (32KB) Lid (32KB) Lid (32KB) Lid (32KB) Lii (32KB) Lii (32KB) Lii (32KB)	L11 (32KB) L11 (32KB) L11 (32KB)	L11 (32KB) L11 (32KB) L11 (32KB)	L11 (32KB) L11 (32KB) [111 (32RB)	L11 (32KB) L11 (32KB)	L11 (32)
La (12100) La (12100) Re total (12100) Lad (1200) Lad (1200) Iad (1200) Lai (1200) Lai (1200) Iad (1200) Lai (1200) Lai (1200) Iad (1200) Core Lai (1200) Core Lai (1200) Core Lai (1200) Core Lai (1200)	L11 (32KB) L11 (32KB) L11 (32KB)	L11 (12KB) L11 (12KB) L11 (12KB) Core L#48 Core L#49 Core L#55	Ll1 (32KB) Ll1 (32KB Core L#96 Core L#97) [L11 (3278)] Come L#103	L11 (3288) L11 (3288) Core L#112 Core L#113	LLI (32) Core L#1
Lid (328) Lid (328) Lid (328) Lid (328) Lid (328) Lid (328) Corres L#32 Corres L#33 Corres L#38 32 ² 32 PCT 21:08.0	L11 (32KB) L11 (32KB) L11 (32KB)	L11 (12E8) L11 (12E8) L11 (12E8) Core L448 Core L449 Core L453 L1 (12M6)	L11 (32KB) L11 (32KE Core L#96 Core L#97 L3 (32ME)) [111 (3288) (Doxe L#103) 8x total [12 (51286)	I.11 (32KB) L.11 (32KB) Cores L#112 Cores L#113 I.3 (32MB) L.2 (512KB)	L1d (328 L11 (328 Coxe L41 L2 (5128 L1d (328
Lid (328) Lid (328) Lid (328) Lid (328) Lid (328) Lid (328) Corres L#32 Corres L#33 Corres L#38 32 ² 32 PCT 21:08.0	L11 (32KB) L11 (32KB) L11 (32KB)	L11 (1228) L11 (1228) Care L448 Care L449 Care L449 L3 (1296) L2 (51286) L2 (51286 Re total	L1 (32KB) L11 (32KB Core L#96 Core L#97 L3 (32MB) L2 (512KB) L2 (512KB) LL1 (3278) Coss L#103) B total L2 (51278)) L14 (3278)	L11 (1286) Core L#112 Core L#112 Core L#113 L2 (51286) L2 (51286) Rc total	L11 (327 Coze L41 L2 (5127

Picture borrowed from: https://docs.nersc.gov/systems/perlmutter/architecture/

Dimensions of Scalability

Scaling performance is shown using three experiment types:

(1) **SCALE1**

increasing graph size (WEAK SCALING, 5000 vertices per core)

(2) **SCALE2**

constant graph size (STRONG SCALING, 10.2M vertices & 696.4M edges)

(3) **SCALE3**

constant graph size (STRONG SCALING, 10.2M vertices & 696.4M edges)

	increasing #cores per node (<u>SCALE-UP</u> , from 1 core/node to
increasing #nodes (<u>SCALE-OUT</u> , from 256 to 65,53 from 1 to 1024	Gr Georgia Tech

• 11		

increasing #nodes (SCALE-OUT, from 256 to 65,536 cores from 1 to 1024 nodes)

Performance Results: <u>SCALE1</u>

Georgia Tech

Performance Results: <u>SCALE2</u>

Performance Results: <u>SCALE3</u>

Georgia Tech

Contrasting to Related Approaches

- We contrast with respect to remote atomics performance and graph application performance
- Related approaches: OpenSHMEM, UPC, MPI3-RMA, YGM

Communication System	Non-Blocking	Read / Get	Update / Set	
OpenSHMEM (cray-shmem 7.7.19)	N	40.06	N.A.	
OpenSHMEM NBI (cray-shmem 7.7.19)	Y	4 .79	4.99 🦷	
UPC (Berkley-UPC 2022.5.0)	N	30.37	30.03	
UPC NBI (Berkley-UPC 2022.5.0)	Y	20.58	N.A.	
MPI3-RMA (OpenMPI 4.1.2)	1.8x	25.44	142.04	7.6
MPI3-RMA (cray-mpich 7.7.19)	Y	9.67	59.47	
YGM	Y	N.A.	> 600	
Actors (cray-shmem 7.7.19)	Y	2.70	0.66	

Remote Atomics

> Gr Georgia Tech

Contrasting to Related Approaches

Gr Georgia Tech

Impact of the Solution

- The actor-based system has shown **scalability**, **productivity**, and **performance**
- The extensibility of this system can front four impacts:

You can try this at home... Just visit hclib-actor.com !

C hclib-actor.com/backgro	und/bsp/		ê 🛧 🗯 🖬 🔮
🦏 HClib-Actor Do	cumentation	Q Search	♦ hclib_actor ☆0 ¥1
HClib-Actor Documentation Home	Bulk Synchronous Parallel	60	Table of contents What is the bulk synchronous parallel model?
Background Theory Bulk Synchronous Parallel Partitioned Global Addres:	 What is the bulk synchronous par The Bulk Synchronous Parallel (BSP) model is one 		Single Program Multiple Data (SPMD) Programming Further Readings
Space Actor Model Practice	models. The model consists of:		
OpenSHMEM Bale	 A set of processor-memory pairs. A communication network that delivers messa 	ages in a point-to-point mapper	
Summary spmat	• Efficient barrier synchronization for all or a sub		
libgetput Habanero-C Library (HClib	$\leftarrow \qquad \qquad \forall irtual \ Processors \\ _ PE_0 \ PE_1 \ PE_2 \ \cdots $	S→	
Getting Started Containers Docker	SUPERSTEP	Local Computation	
Singularity Clusters/Supercomputers NERSC/ORNL/PACE	Å.	Inter-processor Communications	

Georgia Tech

ACKNOWLEDGEMENT

This research is based upon work supported by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), through the Advanced Graphical Intelligence Logical Computing Environment (AGILE) research program, under Army Research Office (ARO) contract number W911NF22C0083. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the ODNI, IARPA, or the U.S. Government.

The 23rd IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing

Highly Scalable Large-Scale Asynchronous Graph Processing using Actors

Youssef Elmougy, Akihiro Hayashi, and Vivek Sarkar Georgia Institute of Technology, Atlanta GA USA

Thank you for your attention!

