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The Growth of Big Data

Graph algorithms have become
increasingly important for
solving problems in many

computational domains
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Picture borrowed from:
https://www.iteratorshg.com/blog/big-data-business-impacts/

The scale of these graphs present difficulties to their
processing and analysis!



The Scalability Problem

increasing graph size and complexity

U There is a need for parallel computing resources to meet the computational and memory requirements

O Existing algorithms and software that perform well for mainstream parallel scientific applications are
not necessarily efficient for large-scale graph applications

It is critical to develop lightweight and scalable Seora
systems to efficiently process large-scale graphs! Gr =




The 4 Overarching Challenges in Parallel Graph Processing
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This paper studies the scalability of our novel actor-based programming system to
overcome the inherent challenges of large-scale graph processing!




Actor-based Scalable Architecture for Graph Processing

Sample Graph Distributed Actor Runtime Execution Model
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Partitioned Global Address Space

* Presents a lightweight, asynchronous computation model

» Utilizes fine-grained asynchronous actor messages to express point-to-point remote operations

« Treats actors as primitives of computation, where actors are inherently isolated and share no mutable state
« Actors process messages sequentially within its mailbox, thereby avoiding data races and synchronization

Gr Georgia
Tech.

NOTE: “Actor” and “Selector” will be used interchangeably 5




Actor-based Scalable Architecture for Graph Processing

Distributed Actor Runtime

The 4 overarching challenges of parallel graph processing:
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Partitioned Global Address Space
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Sample Graph
\
« Large-scale graph can be distributed across multiple PEs, where the local Gr Georgia
partition per PE is small enough to fit in its local memory Tech.




Actor-based Scalable Architecture for Graph Processing

The 4 overarching challenges of parallel graph processing: Execution Model

PE®O PE1 PE2 PE3 PE4 PES
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* Fine-grained Asynchronous Bulk-Synchronous (FABS) Parallelism model GI‘ Georgia
» Reduces barriers and time spent idling at barriers, further reducing stall cycles Tech.



Actor-based Scalable Architecture for Graph Processing
Distributed Actor Runtime

The 4 overarching challenges of parallel graph processing:
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Partitioned GIobaI Address Space
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« Well suited for irregular applications due to the Partitioned Global Address Space (PGAS)

« Expresses point-to-point remote operations as short, one-sided fine-grained async messages

« Message aggregation allows for low overhead and high network utilization GI‘ %-eegf,gla
« Computation is migrated to where the data is located (moving compute to data)



Actor-based Scalable Architecture for Graph Processing

The 4 overarching challenges of parallel graph processing: Execution Model

PE®O PE1 PE2 PE3 PE4 PES
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» As actor messages are executed, the local state of the actor is updated, allowing the
next received actor message to utilize the updated state within the same super-step GI' Georgia
« Updates the neighboring vertices with most recent values within the same iteration Tech.



Showing the System’s Extreme Scalability with
PageRank & Jaccard Index

We focus on PageRank and Jaccard Index due to two reasons:

1. They show iterative vs non-iterative application types
2. They have been applied to many real-world problems with social impact

Georgia
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Experimental Setup and Architecture

 Metrics: execution time (in seconds) and traversed edges per second (TEPS)

« Experiments conducted on the CPU nodes of the Perlmutter supercomputer at
the National Energy Research Scientific Computing Center (NERSC)

e Results for different dimensions

« 2x AMD EPYC 7763 (Milan) CPUs
64 physical cores per CPU ; E— -
* 512 GB memory e oo e e s e K e c
« 1x HPE Cray Slingshot Interconnect o ey e e e i:‘
= il
e
[

e l.ulll |cnn uul

L M Grougl Grough
of scalability are presented e —
|[£3 ey 1111 | [ [ s
L2 (517KE) |“:-‘S”c“”[ 2 (‘n;-m)”u iz [z ('xl:'xr-_\l ufﬁ.ﬂ NEEREET|||E “:-"llll,;' (o | I L ('l;w.\”u 2HE) | Rf“ L | u:ra-.gl | 12 (':1?»&)”:.:: (51 7KE) |n:-‘l° -
[124_czm |[124 @ 110 (x| ||| | | [ v2m ||| (120 czm | [10 e |
R 5E B u 5 Al [1a1 oz |[121 cozey |[11s ooxm | ||| e | | [ s2m) |[|[123_czme |[11s_omm |
: : : : : : : : |Qllﬁ L'”I |mﬁ ’-.Iﬂl |Cﬂ0 u‘ll | “ Li 7 I LI103 I L L l!l
4 l a 4 l a 2 M=

3 ' : gy 1) | EEEE L PR | 000 [z gz ||| x| 00
|| Lld (12KE) | |L1Al (IZKE) | ZKE) | | Lld (3 ) | L1 ZKE) |
) [ L1i (3ZKE) ” L1i (32KE) I | L1i (312KE) (I2KB ZKE) I | i ) ] L KE) ]
AMD Milan <_> AMD Milan [coce tase] [cocs ras7] [coca tae3] [|[|[coe= zo10a] [core tmas] [0 1] || [eoem La120] [cora tnz ]

E Picture borrowed from: https://docs.nersc.gov/systems/perimutter/architecture/

e Gr Georgia
NIC Tech.


https://docs.nersc.gov/systems/perlmutter/architecture/

Dimensions of Scalability

Scaling performance is shown using three experiment types:
(1) SCALE1 (2) SCALE2 (3) SCALE3

increasing graph size (WEAK SCALING, 5000 Vertices per core) constant Qraph size constant graph size
(STRONG SCALING, 10.2M vertices & 696.4M edges) (STRONG SCALING, 10.2M vertices & 696.4M edges)
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increasing #nodes (SCALE-OUT, from 256 to 65,536 cores increasing #nodes (SCALE-OUT, from 256 to 65,536 cores
from 1 to 1024 nodes ) from 1 to 1024 nodes )

Gr Georgia
Tech.

12



Performance Results: SCALE1
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Performance Results: SCALE?2

Jaccard Index

70.6% parallel
efficiency
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Performance Results: SCALE3
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Contrasting to Related Approaches

« We contrast with respect to remote atomics performance and graph application

performance

» Related approaches: OpenSHMEM, UPC, MPI3-RMA, YGM

Remote
Atomics

Communication System Non-Blocking | Read / Get | Update / Set
OpenSHMEM (cray-shmem 7.7.19) N 40.06 N.A.

OpenSHMEM NBI (cray-shmem 7.7.19) Y A 4.79 4.99 W

UPC (Berkley-UPC 2022.5.0) N / 30.37 30.03 \

UPC NBI (Berkley-UPC 2022.5.0) Y 20.58 N.A.

MPI3-RMA (OpenMPI 4.1.2) 1.8x 25.44 142.04 7.6x
MPI3-RMA (cray-mpich 7.7.19) Y 9.67 59.47

YGM Y \ NA > 600

Actors (cray-shmem 7.7.19) \ 2.70 0.66 j

Cr
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Contrasting to Related Approaches
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Impact of the Solution

» The actor-based system has shown scalability, productivity, and performance
* The extensibility of this system can front four impacts:

The system can be used on graphs of higher scale as well as systems of

higher scaled-up/-out hardware resources

The system can be extended to other large-scale (iterative/non-iterative)
graph applications

The system can be applied to structured, regular applications

The system can be expanded and compared to other related PGAS and
non-PGAS approaches

Gr Georgia
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You can try this at home... Just visit hclib-actor.com !
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